Advertisement

Hydrogenic impurity states in CdSe/ZnS and ZnS/CdSe core-shell nanodots with dielectric mismatch

  • M. Cristea
  • E. C. NiculescuEmail author
Regular Article

Abstract

Within the effective mass approximation we theoretically studied the electronic properties of CdSe/ZnS and ZnS/CdSe core-shell quantum dots surrounded by wide-gap dielectric materials. The finite element method is used to obtain the lowest impurity levels and the carrier spatial distribution within the dot. We found that in these zero-dimensional semiconductor structures the electron energy is sensitively dependent on the dielectric constants of the embedding and on the heterostructure geometry. The influence of polarization charges on the binding energy of hydrogenic impurities off-center located is also investigated. The results suggest that in dielectrically modulated nanodots the donor energy can be tuned to a large extent by the structure design, the impurity position and a proper choice of the dielectric media.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    C. Dane, H. Akbas, S. Minez, A. Guleroglu, Physica E 41, 278 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    E. Sadeghi, Physica E 41, 1319 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    M.G. Barseghyan, A.A. Kirakosyan, C.A. Duque, Eur. Phys. J. B 72, 521 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    V.I. Klimov, A.A. Mikhailovsky, S. Xu, J.A. Holingsworth, Science 290, 314 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    M. Dybiec, G. Chomokur, S. Ostapenko, A. Wolcott, J.Z. Zhang, A. Zajac, C. Phelan, T. Sellers, G. Gerion, Appl. Phys. Lett. 90, 263112 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    D. Gerion, F. Pinaud, S.C. Williams, W.J. Parak, D. Zanchet, S. Weiss, A.P. Alivisatos, J. Phys. Chem. B 105, 8861 (2001) CrossRefGoogle Scholar
  7. 7.
    R. Tsu, D. Babić, Appl. Phys. Lett. 64, 1806 (1994) ADSCrossRefGoogle Scholar
  8. 8.
    J.L. Movilla, J. Planelles, Comput. Phys. Commun. 170, 144 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    V.A. Belyakov, V.A. Burdov, Nano. Res. Lett. 2, 569 (2007)CrossRefGoogle Scholar
  10. 10.
    E.C. Niculescu, Eur. Phys. J. B 79, 363 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    E.C. Niculescu, M. Cristea, Eur. Phys. J. B 84, 59 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    V.I. Boichuk, I.V. Bilynskyi, R.Y. Leshko, L.M. Turyanska, Physica E 44, 476 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    M. Hines, P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996) CrossRefGoogle Scholar
  14. 14.
    A.C. Bartnik, F.W. Wise, A. Kigel, E. Lifshitz, Phys. Rev. B 75, 245424 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    X. Feng, G. Xiong, X. Zhang, H. Gao, Physica B 383, 207 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    M. Iwamatsu, K. Horii, Jpn J. Appl. Phys. 36, 6416 (1997) ADSCrossRefGoogle Scholar
  17. 17.
    V.A. Holovatsky, O.M. Makhanets, O.M. Voitsekhivska, Physica E 41, 1522 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    L.P. Balet, S.A. Ivanov, A. Piryatinski, M. Achermann, V.I. Klimov, Nano. Lett. 4, 1485 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    M. Bär, S. Lehmann, M. Rusu, A. Grimm, I. Kötschau, I. Lauermann, P. Pistor, S. Sokoll, Th. Schedel-Niedrig, M. Ch. Lux-Steiner, Ch.-H. Fischerb, L. Weinhardt, C. Heske, Ch. Jung, Appl. Phys. Lett. 86, 222107 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    Q. Shen, T. Toyoda, Jpn J. Appl. Phys., Part 1 43, 2946 (2004)CrossRefGoogle Scholar
  21. 21.
    J. Zhao, J. Zhang, C. Jiang, J. Bohnenberger, T. Basché, A. Mews, J. Appl. Phys. 96, 3206 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    M.C. Schlamp, X. Peng, A.P. Alivisatos, J. Appl. Phys. 82, 5837 (1997) ADSCrossRefGoogle Scholar
  23. 23.
    S. Kim, B. Fisher, H.-J. Eisler, M. Bawendi, J. Am. Chem. Soc. 125, 11466 (2003) CrossRefGoogle Scholar
  24. 24.
    E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. LeQuang, I. Ledoux-Rak, J. Zyss, J. Phys. Chem. B 110, 25356 (2006) CrossRefGoogle Scholar
  25. 25.
    A. Joshi, K.Y. Narsingi, M.O. Manasreh, E.A. Davis, B.D. Weaver, Appl. Phys. Lett. 89, 131907 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    S. Min Kim, H.-S. Yang, Current Appl. Phys. 11, 1249 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    G. Kalyuzhny, R.W. Murray, J. Phys. Chem. B 109, 7012 (2005) CrossRefGoogle Scholar
  28. 28.
    C. Bullen, P. Mulvaney, Langmuir 22, 3007 (2006) CrossRefGoogle Scholar
  29. 29.
    A. Antipov, M. Bell, M. Yasar, V. Mitin, W. Scharmach, M. Swihart, A. Verevkin, A. Sergeev, Nano. Res. Lett. 6, 142 (2011)CrossRefGoogle Scholar
  30. 30.
    V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Nature 370, 354 (1994) ADSCrossRefGoogle Scholar
  31. 31.
    M.C. Schlamp, X. Peng, A.P. Alivisatos, J. Appl. Phys. 82, 5837 (1997) ADSCrossRefGoogle Scholar
  32. 32.
    M. Gao, B. Richter, S. Kirstein, H. Möhwald, J. Phys. Chem. B 102, 4096 (1998) CrossRefGoogle Scholar
  33. 33.
    B.O. Dabbousi, M.G. Bawendi, O. Onitsuka, M.F. Rubner, Appl. Phys. Lett. 66, 1316 (1995) ADSCrossRefGoogle Scholar
  34. 34.
    J. Lee, M. Mathai, F. Jain, F. Papadimitrakopoulos, J. Nanosci. Nanotechnol. 1, 59 (2001)CrossRefGoogle Scholar
  35. 35.
    N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Banin, Science 295, 1506 (2002) ADSCrossRefGoogle Scholar
  36. 36.
    J. Zhou, L. Li, Z. Gui, X. Zhang, D.J. Barber, Nanostruct. Mater. 8, 321 (1997)CrossRefGoogle Scholar
  37. 37.
    J. Zhou, L. Li, Z. Gui, X. Zhang, Ferroelectrics 196, 405 (1997) Google Scholar
  38. 38.
    J. Zhou, L. Li, Z. Gui, S. Buddhudu, Y. Zhou, Appl. Phys. Lett. 76, 1540 (2000) ADSCrossRefGoogle Scholar
  39. 39.
    S. Hong, J. Singh, J. Appl. Phys. 61, 5346 (1987) ADSCrossRefGoogle Scholar
  40. 40.
    A. Joshi, K.Y. Narsingi, M.O. Manasreh, E.A. Davis, B.D. Weaver, Appl. Phys. Lett. 89, 131907 (2006) ADSCrossRefGoogle Scholar
  41. 41.
    T.V. Torchynska, J. Douda, R. Peña Sierra, Phys. Status Solidi C 6, S143 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    J. Zhou, L. Li, Z. Gui, S. Buddhudu, Y. Zhou, Appl. Phys. Lett. 76, 1540 (2000) ADSCrossRefGoogle Scholar
  43. 43.
    C. Delerue, M. Lannoo, Nanostructures. Theory and Modelling (Springer-Verlag, Berlin Heidelberg, 2004)Google Scholar
  44. 44.
    M. Royo, J.I. Climente, J.I. Movilla, J. Planelles, J. Phys. Condens. Matter 23, 015301 (2011) ADSCrossRefGoogle Scholar
  45. 45.
    D. Kammerlander, F. Troiani, G. Goldoni, Phys. Rev. B 81, 115310 (2010) ADSCrossRefGoogle Scholar
  46. 46.
    Bin Li, A.F. Slachmuylders, B. Partoens, W. Magnus, F.M. Peeters, Phys. Rev. B 77, 115335 (2008) ADSCrossRefGoogle Scholar
  47. 47.
    M. Cristea, E.C. Niculescu, Int. J. Quant. Chem. 112, 1737 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Physics Department“Politehnica” University of BucharestBucharestRomania

Personalised recommendations