Advertisement

Bipartite entanglement of the one-dimensional extended quantum compass model in a transverse field

  • G. H. LiuEmail author
  • W. Li
  • W. L. You
Regular Article

Abstract

By using the infinite time-evolving block decimation (iTEBD) method, we obtain the ground state wave function of the one-dimensional quantum compass model in a transverse field in the form of a matrix product state (MPS). Based on the MPS, quantum entanglement, order parameters, and correlation functions are calculated numerically. The bipartite entanglement measure which is defined by the singular values obtained from the singular value decomposition (SVD) of tensors is found to be capable of detecting all the quantum phase transitions in this model. The rich phase diagram that we have obtained supports that suggested previously by using the Jordan-Wigner transformation. In addition, some order parameters used to characterise different phases are also introduced.

Keywords

Computational Methods 

References

  1. 1.
    J.B. Goodenough, Phys. Rev. 100, 564 (1955)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Tokura, N. Nagaosa, Science 288, 462 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    B.B. Van Aken, O.D. Jurchescu, A. Meetsma, Y. Tomioka, Y. Tokura, T.T.M. Palstra, Phys. Rev. Lett. 90, 066403 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    T. Hotta, E. Dagotto, Phys. Rev. Lett. 92, 227201 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    H. Zenia, G.A. Gehring, W.M. Temmerman, New J. Phys. 7, 257 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Wakabayashi, D. Bizen, H. Nakao, Y. Murakami, M. Nakamura, Y. Ogimoto, K. Miyano, H. Sawa, Phys. Rev. Lett. 96, 017202 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    K.I. Kugel, D.I. Khomskii, Sov. Phys. JETP 37, 725 (1973)ADSGoogle Scholar
  8. 8.
    B. Douçot, M.V. Feigelman, L.B. Ioffe, A.S. Ioselevich, Phys. Rev. B 71, 024505 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    P. Milman, W. Maineult, S. Guibal, L. Guidoni, B. Douot, L. Ioffe, T. Coudreau, Phys. Rev. Lett. 99, 020503 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    J. Dorier, F. Becca, F. Mila, Phys. Rev. B 72, 024448 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    C. Xu, J.E. Moore, Phys. Rev. Lett. 93, 047003 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    H.-D. Chen, C. Fang, J. Hu, H. Yao, Phys. Rev. B 75, 144401 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    R. Orús, A.C. Doherty, G. Vidal, Phys. Rev. Lett. 102, 077203 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    W. Brzezicki, J. Dziarmaga, A.M. Oleś, Phys. Rev. B 75, 134415 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    W. Brzezicki, A.M. Oleś, Acta Physica Polonica A 115, 162 (2009)Google Scholar
  16. 16.
    K.-W. Sun, Y.-Y. Zhang, Q.-H. Chen, Phys. Rev. B 79, 104429 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    W.-L. You, G.-S. Tian, Phys. Rev. B 78, 184406 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    E. Eriksson, H. Johannesson, Phys. Rev. B 79, 224424 (2009)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    S. Mahdavifar, Eur. Phys. J. B 77, 77 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    S.-J. Gu, G.-S. Tian, H.-Q. Lin, Chin. Phys. Lett. 24, 2737 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    G.-H. Liu, H.-L. Wang, G.-S. Tian, Phys. Rev. B 77, 214418 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    K.-W. Sun, Q.-H. Chen, Phys. Rev. B 80, 174417 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    R. Jafari, Phys. Rev. B 84, 035112 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    G. Vidal, Phys. Rev. Lett. 98, 070201 (2007)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    R. Orús, G. Vidal, Phys. Rev. B 78, 155117 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    C.-Y. Huang, F.-L. Lin, Phys. Rev. A 81, 032304 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    E. Schmidt, Math. Ann. 63, 433 (1907)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    H.-C. Jiang, Z.-Y. Weng, T. Xiang, Phys. Rev. Lett. 101, 090603 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsTianjin Polytechnic UniversityTianjinP.R. China
  2. 2.College of Physical SciencesGraduate University of Chinese Academy of SciencesBeijingP.R. China
  3. 3.School of Physical Science and TechnologySoochow UniversitySuzhou, JiangsuP.R. China

Personalised recommendations