Advertisement

Trapped modes in finite quantum waveguides

  • A. L. Delitsyn
  • B. T. Nguyen
  • D. S. GrebenkovEmail author
Regular Article

Abstract

The eigenstates of an electron in an infinite quantum waveguide (e.g., a bent strip or a twisted tube) are often trapped or localized in a bounded region that prohibits the electron transmission through the waveguide at the corresponding energies. We revisit this statement for resonators with long but finite branches that we call “finite waveguides”. Although the Laplace operator in bounded domains has no continuous spectrum and all eigenfunctions have finite L 2 norm, the trapping of an eigenfunction can be understood as its exponential decay inside the branches. We describe a general variational formalism for detecting trapped modes in such resonators. For finite waveguides with general cylindrical branches, we obtain a sufficient condition which determines the minimal length of branches for getting a trapped eigenmode. Varying the branch lengths may switch certain eigenmodes from non-trapped to trapped or, equivalently, the waveguide state from conducting to insulating. These concepts are illustrated for several typical waveguides (L-shape, bent strip, crossing of two strips, etc.). We conclude that the well-established theory of trapping in infinite waveguides may be incomplete and require further development for applications to finite-size microscopic quantum devices.

Keywords

Solid State and Materials 

References

  1. 1.
    G. Timp, H.U. Baranger, P. deVegvar, J.E. Cunningham, R.E. Howard, R. Behringer, P.M. Mankiewich, Phys. Rev. Lett. 60, 2081 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    R.L. Schult, D.G. Ravenhall, H.W. Wyld, Phys. Rev. B 39, 5476 (1989) ADSCrossRefGoogle Scholar
  3. 3.
    J.P. Carini, J.T. Londergan, K. Mullen, D.P. Murdock, Phys. Rev. B 46, 15538 (1992) ADSCrossRefGoogle Scholar
  4. 4.
    J.P. Carini, J.T. Londergan, K. Mullen, D.P. Murdock, Phys. Rev. B 48, 4503 (1993) ADSCrossRefGoogle Scholar
  5. 5.
    J.P. Carini, J.T. Londergan, D.P. Murdock, D. Trinkle, C.S. Yung, Phys. Rev. B 55, 9842 (1997) ADSCrossRefGoogle Scholar
  6. 6.
    J.T. Londergan, J.P. Carini, D.P. Murdock, Binding and Scattering in Two-Dimensional Systems: Applications to Quantum Wires, Waveguides and Photonic Crystals (Springer, Berlin, 1999)Google Scholar
  7. 7.
    P. Duclos, P. Exner, Rev. Math. Phys. 7, 73 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley & Sons, New York, 1999) Google Scholar
  9. 9.
    C.M. Linton, P. McIver, Wave Motion 45, 16 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    O. Olendski, L. Mikhailovska, Phys. Rev. E 81, 036606 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    F. Rellich, Das Eigenwertproblem von in Halbrohren, (Studies and Essays Presented to R. Courant, New York, 1948), pp. 329–344Google Scholar
  12. 12.
    D.S. Jones, Math. Proc. Camb. Phil. Soc. 49, 668 (1953)ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    F. Ursell, Math. Proc. Camb. Phil. Soc. 47, 347 (1951)ADSzbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    F. Ursell, J. Fluid Mech. 183, 421 (1987) ADSzbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    F. Ursell, Proc. R. Soc. Lond. A 435, 575 (1991) ADSzbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    R. Parker, J. Sound Vib. 4, 62 (1966)ADSCrossRefGoogle Scholar
  17. 17.
    R. Parker, J. Sound Vib. 5, 330 (1967)ADSCrossRefGoogle Scholar
  18. 18.
    P. Exner, P. Seba, J. Math. Phys. 30, 2574 (1989) ADSzbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    J. Goldstone, R.L. Jaffe, Phys. Rev. B 45, 14100 (1992) ADSCrossRefGoogle Scholar
  20. 20.
    B. Chenaud, P. Duclos, P. Freitas, D. Krejcirík, Diff. Geom. Appl. 23, 95 (2005)zbMATHCrossRefGoogle Scholar
  21. 21.
    D.V. Evans, IMA J. Appl. Math. 49, 45 (1992)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    D.V. Evans, M. Levitin, D. Vassiliev, J. Fluid Mech. 261, 21 (1994)ADSzbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    E.B. Davies, L. Parnovski, Q.J. Mech. Appl. Math. 51, 477 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    W. Bulla, F. Gesztesy, W. Renger, B. Simon, Proc. Amer. Math. Soc. 125, 1487 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    J. Dittrich, J. Kríz, J. Phys. A: Math. Gen. 35, L269 (2002) ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    P. Freitas, D. Krejčiřík, Math. Phys. Anal. Geom. 9, 335 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    A.S. Bonnet-Ben Dhia, P. Joly, SIAM J. Appl. Math. 53, 1507 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    M.S. Ashbaugh, P. Exner, Phys. Lett. A 150, 183 (1990) ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    P. Exner, P. Freitas, D. Krejčiřík, Proc. R. Soc. Lond. A 460, 3457 (2004) ADSzbMATHCrossRefGoogle Scholar
  30. 30.
    B. Sapoval, T. Gobron, A. Margolina, Phys. Rev. Lett. 67, 2974 (1991) ADSCrossRefGoogle Scholar
  31. 31.
    C. Even, S. Russ, V. Repain, P. Pieranski, B. Sapoval, Phys. Rev. Lett. 83, 726 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    S. Felix, M. Asch, M. Filoche, B. Sapoval, J. Sound. Vib. 299, 965 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    J.L. Lions, E. Magenes, Non-homogeneous Boundary value Problems and Applications (Springer-Verlag, Berlin, New York, 1972)Google Scholar
  34. 34.
    M.S. Birman, Mat. Sbornik 55, 125 (1961) [in Russian] MathSciNetGoogle Scholar
  35. 35.
    J. Schwinger, Proc. Natl. Acad. Sci. 47, 122 (1961)ADSCrossRefMathSciNetGoogle Scholar
  36. 36.
    A.L. Delitsyn, Diff. Equ. 40, 207 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Y. Avishai, D. Bessis, B.G. Giraud, G. Mantica, Phys. Rev. B 44, 8028 (1991) ADSCrossRefGoogle Scholar
  38. 38.
    E.N. Bulgakov, P. Exner, K.N. Pichugin, A.F. Sadreev, Phys. Rev. B 66, 155109 (2002) ADSCrossRefGoogle Scholar
  39. 39.
    P. Freitas, D. Krejčiřík, Proc. Amer. Math. Soc. 136, 2997 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    P. Exner, P. Seba, M. Tater, D. Vanek, J. Math. Phys. 37, 4867 (1996) ADSzbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1980) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. L. Delitsyn
    • 1
  • B. T. Nguyen
    • 2
  • D. S. Grebenkov
    • 2
    • 3
    • 4
    Email author
  1. 1.Mathematical Department of the Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Laboratoire de Physique de la Matière Condensée (UMR 7643)CNRS — Ecole PolytechniquePalaiseauFrance
  3. 3.Laboratoire Poncelet (UMI 2615)CNRS — Independent University of MoscowMoscowRussia
  4. 4.Chebyshev LaboratorySaint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations