Entropy and equilibrium state of free market models

Regular Article

Abstract

Many recent models of trade dynamics use the simple idea of wealth exchanges among economic agents in order to obtain a stable or equilibrium distribution of wealth among the agents. In particular, a plain analogy compares the wealth in a society with the energy in a physical system, and the trade between agents to the energy exchange between molecules during collisions. In physical systems, the energy exchange among molecules leads to a state of equipartition of the energy and to an equilibrium situation where the entropy is a maximum. On the other hand, in a large class of exchange models, the system converges to a very unequal condensed state, where one or a few agents concentrate all the wealth of the society while the wide majority of agents shares zero or almost zero fraction of the wealth. So, in those economic systems a minimum entropy state is attained. We propose here an analytical model where we investigate the effects of a particular class of economic exchanges that minimize the entropy. By solving the model we discuss the conditions that can drive the system to a state of minimum entropy, as well as the mechanisms to recover a kind of equipartition of wealth.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    L.E. Reichl, A Modern Course in Statistical Physics, 2nd. edn. (Wiley, New York, 1998)Google Scholar
  2. 2.
    P. Bak, How Nature Works (Springer-Verlag, New York, 1999)Google Scholar
  3. 3.
    A. Mas-Collel, M.D. Whiston, J.R. Green, Microeconomic Theory (Oxford University Press, New York, 1995) Google Scholar
  4. 4.
    V.M. Yakovenko, J. Barkley Rosser, Jr., Rev. Mod. Phys. 81, 1703 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    V. Pareto, Cours d’Economie Politique, edited by F. Pichou (University of Lausanne Press, Lausanne, 1897), Vol. 2Google Scholar
  6. 6.
    H. Aoyama, W. Souma, Y. Fujiwara, Physica A 324, 352 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    M. Nirei, W. Souma, Rev. Income Wealth 53, 440459 (2000) Google Scholar
  8. 8.
    F. Clementi, M. Gallegati, Physica A 350, 427 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    S. Sinha, Physica A 359, 555 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    A. Dragulescu, V.M. Yakovenko, Eur. J. Phys. B 17, 723 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    A. Dragulescu, V.M. Yakovenko, Eur. J. Phys. B 20, 585 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    A. Dragulescu, V.M. Yakovenko, Physica A 299, 213 (2001) ADSMATHCrossRefGoogle Scholar
  13. 13.
    Econophysics of Wealth Distributions, edited by A. Chaterjee, S. Yarlagadda, B.K. Chakrabarti (Springer, Milano, 2005)Google Scholar
  14. 14.
    G.M. Caon, S. Gonçalves, J.R. Iglesias, Eur. Phys. J. Special Top. 143, 69 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    J. Angle, Soc. Forces 65, 293 (1986)Google Scholar
  16. 16.
    J. Angle, J. Math. Sociol. 18, 2746 (1993) CrossRefGoogle Scholar
  17. 17.
    A. Chakraborti, B.K. Charkrabarti, Eur. J. Phys. B 17, 167 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    S. Sinha, Phys. Scr. T 106, 59 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    A. Chatterjee, B.K. Chakrabarti, S.S. Manna, Physica A 335, 155 (2004) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    B.K. Chakrabarti, A. Chatterjee, Ideal Gas-Like Distributions in Economics: Effects of Saving Propensity, in Applications of Econophysics, Conference proceedings of Second Nikkei Symposium on Econophysics, edited by H. Takayasu (Tokyo, Japan, by Springer-Verlag, Tokyo, 2002), pp. 280–285Google Scholar
  21. 21.
    J.R. Iglesias, S. Gonçalves, S. Pianegonda, J.L. Vega, G. Abramson, Physica A 327, 12 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    J.R. Iglesias, S. Gonçalves, G. Abramson, J.L. Vega, Physica A 342, 186 (2004) ADSCrossRefGoogle Scholar
  23. 23.
    J.-P. Bouchaud, M. Mézard, Physica A 282, 536 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    C.F. Mourkazel, S. Gonçalves, J.R. Iglesias, M. Achach, R. Huerta, Eur. Phys. J. Special Top. 143, 75 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    N. Scafetta, S. Picozzi, B.J. West, Physica D 193, 338 (2004) ADSMATHCrossRefGoogle Scholar
  26. 26.
    M. Ausloos, A. Pekalski, Physica A 373, 560 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    J.R. Iglesias, Sci. Cult. 76, 437 (2010)Google Scholar
  28. 28.
    F. Slanina, Phys. Rev. E 69, 046102 (2004) ADSCrossRefGoogle Scholar
  29. 29.
    J. González-Estévez, M.G. Cosenza, R. López-Ruiz, J.R. Sánchez, Physica A 387, 4637 (2008) ADSCrossRefGoogle Scholar
  30. 30.
    J. González-Estévez, M.G. Cosenza, O. Alvarez-Llamoza, R. López-Ruiz, Physica A 388, 3521 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    N. Lammoglia, V. Muñoz, J. Rogan, B. Toledo, R. Zarama, J.A. Valdivia, Phys. Rev. E 78, 047103 (2008) ADSCrossRefGoogle Scholar
  32. 32.
    J. Miśkiewicz, Physica A 387, 6595 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    J. Miśkiewicz, M. Ausloos, Physica A 387, 6584 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    J. Miśkiewicz, M. Ausloos, Physica A 389, 797 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    M. Ausloos, J. Miśkiewicz, Brazilian J. Phys. 39, 388 (2009)ADSGoogle Scholar
  36. 36.
    Adam Smith, An Inquiry into the Nature And Causes of the Wealth of Nations, Online edition ©1995-2005 (Adam Smith Institute, 1776), http://www.adamsmith.org/smith/won/won-b1-c2.html
  37. 37.
    B. Hayes, Am. Sci. 90, 400 (2002)Google Scholar
  38. 38.
    S. Pianegonda, J.R. Iglesias, Physica A 342, 193 (2004) ADSCrossRefGoogle Scholar
  39. 39.
    M. Gallegati, S. Kee, T. Lux, P. Ormerod, Physica A 370, 1 (2006)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Instituto de Física, UFRGS, and Instituto Nacional de Ciência e Tecnologia de Sistemas ComplexosPorto AlegreBrazil
  2. 2.Programa de Pós-Graduação em Economia Aplicada, UFRGSPorto AlegreBrazil

Personalised recommendations