Advertisement

Dielectric properties and relaxation phenomena in the diffuse ferroelectric phase transition in K3Li2Nb5O15 ceramic

  • A. Belboukhari
  • Z. Abkhar
  • Y. GagouEmail author
  • J. Belhadi
  • R. Elmoznine
  • D. Mezzane
  • M. El Marssi
  • I. Luk’yanchuk
Regular Article

Abstract

Structural and dielectric properties of Potassium Lithium Niobate polycrystalline ceramic K3Li2Nb5O15 (KLN), having the tetragonal tungsten bronze (TTB) – type structure are studied in the temperature interval 50−550 °C. Special emphasis is given to the diffuse phase transition occurring around 440 °C. Space charge polarization, relaxation phenomena and free charge conductivity have been elucidated using impedance spectroscopy technique. Argand plots have revealed a non Debye and polydispersive type relaxation. In paraelectric phase the Arrhenius activation energy E τ  = 0.533 eV was determined. The structural and dielectric results are compared with two others TTB compounds derived from KLN family: Pb1.85K1.15Li0.15Nb5O15 (PKLN) and GdK2Nb5O15 (GKN).

Keywords

Solid State and Materials 

References

  1. 1.
    Jin Soo Kim et al., J. Korean Phys. Soc. 32, 316 (1998)Google Scholar
  2. 2.
    T. Tsurumi, K. Soejima, T. Kamiya, M. Daimon, Jpn J. Appl. Phys. 33, 1959 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    Yuheng Xu, Wusheng Xu, Shiwen Xu, Rui Wang, Xiaojun Chen, Optik 114, 81 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    M. Adachia et al., Landolt-Börnstein (Springer, Berlin, Heidelberg, 1981), Vols. III/3, III/9Google Scholar
  5. 5.
    Agnes Péter et al., J. Alloys Compd. 463, 398 (2008)CrossRefGoogle Scholar
  6. 6.
    J. Ravez, B. Elouadi, Mater. Res. Bull. 19, 1249 (1975)CrossRefGoogle Scholar
  7. 7.
    J. Thoret, J. Ravez, Rev. Chim. Minerale T 24, 288 (1987)Google Scholar
  8. 8.
    A. Zegzouti, M. Elaatmani, Sil. Ind. 62, 149 (1997)Google Scholar
  9. 9.
    A. Zegzouti, A. Abalhassain, M. Elaatmani, J. Phys. III France 6, 727 (1996)CrossRefGoogle Scholar
  10. 10.
    M. Cochez et al., J. Alloys Compd. 386, 238 (2005)CrossRefGoogle Scholar
  11. 11.
    E. Choukri et al., Eur. Phys. J. Appl. Phys. 53, 20901 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Amira, thesis, University Cadi Ayyad 2010, p. 85Google Scholar
  13. 13.
    J. Rodrigues-Carvajal, Program Fullprof (2009)Google Scholar
  14. 14.
    L.G. Van Uitert et al., Mat. Res. Bull. 3, 47 (1968)CrossRefGoogle Scholar
  15. 15.
    M. El Marssi et al., J. Appl. Phys. 83, 5371 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    K. Sambasiva Rao et al., Physica B 403, 2079 (2008)Google Scholar
  17. 17.
    F. De Guerville, M. El Marssi, I. Luk’yanchuk, L. Lahoche, Ferroelectrics 359, 14 (2007)CrossRefGoogle Scholar
  18. 18.
    G. Pascoli L. Lahoche, I. Luk’yanchuk, Integrated Ferroelectrics 99, 60 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Prades, H. Beltrán, N. Masó, E. Cordoncillo, A.R. West, J. Appl. Phys. 104, 104118 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    X.L. Zhu, X.M. Chen, X.Q. Liu, X.G. Li, J. Appl. Phys. 105, 124110 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    X.L. Zhu, X.M. Chen, Appl. Phys. Lett. 96, 032901 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    K. Sambasiva Rao et al., Int. J. Mod. Phys. B 21, 931 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    T.R. Shrout, L.E. Cross, D.A. Hukin, Ferroelectr. Lett. 44, 325 (1983)CrossRefGoogle Scholar
  24. 24.
    F.G. Jona, G. Shirane, Ferroelectric Crystals (Pergamon, 1962)Google Scholar
  25. 25.
    D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Phys. Rev. B 46, 8003 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    K. Sambasiva Rao et al., Mater. Sci. Eng. B 133, 141 (2006)Google Scholar
  27. 27.
    T.A. Nealon, Ferroelectrics 76, 377 (1987)CrossRefGoogle Scholar
  28. 28.
    L. Zhigao, J.P. Bonnet, J. Ravez, P. Hagenmuller, Solid State Ion. 57, 235 (1992)CrossRefGoogle Scholar
  29. 29.
    A.K. Jonscher, R.M. Hill, C. Pickup, J. Mater. Sci. 20, 4431 (1985)ADSCrossRefGoogle Scholar
  30. 30.
    S.H. Kim, M.S. Jang, Y.S. Yang, H.J. Kimand, N.Y. Ryu, Ferroelectrics 196, 261 (1997)CrossRefGoogle Scholar
  31. 31.
    Chen Ang, Zhi Jing, Zhi Yu, J. Phys.: Condens. Matter 14, 8901 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Yu Zhi, Ang Chen, Guo Ruyan, A.S. Bhalla, J. Appl. Phys. 92, 2655 (2002)CrossRefGoogle Scholar
  33. 33.
    I.A. Santos, D. Garcia, J.A. Eiras, J. Appl. Phys. 93, 1701 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    V.V. Kirilov, V.A. Isupov, Ferroelectrics 5, 3 (1973)CrossRefGoogle Scholar
  35. 35.
    D. Kajewski, Z. Ujma, J. Phys. Chem. Sol., 71, 24 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    M.A.L. Nobre, S. Lanfredi, Mater. Lett. 50, 322 (2001)CrossRefGoogle Scholar
  37. 37.
    M.A.L. Nobre, S. Lanfredi, J. Phys. Chem. Solids 62, 1999 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    M.A.L. Nobre, S. Lanfredi, Mater. Lett. 47, 362 (2001)CrossRefGoogle Scholar
  39. 39.
    A.R. James, S. Balaji, S.B. Krupanidhi, Mater. Sci. Eng. B 64, 149 (1999)CrossRefGoogle Scholar
  40. 40.
    J.R. MacDonald, W.B. Johnson, Impedance Spectroscopy (John Wiley & Sons, New York)Google Scholar
  41. 41.
    R. El Moznine et al., J. Phys. D 36, 330 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    M. Ram, Solid State Commun. 149, 1226 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    A.K. Jonscher, Nature 267, 673 (1977)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Belboukhari
    • 1
  • Z. Abkhar
    • 1
  • Y. Gagou
    • 2
    Email author
  • J. Belhadi
    • 2
  • R. Elmoznine
    • 3
  • D. Mezzane
    • 1
  • M. El Marssi
    • 2
  • I. Luk’yanchuk
    • 2
  1. 1.LMCN, F.S.T.G Université Cadi AyyadMarrakechMaroc
  2. 2.LPMC, Université de PicardieAmiens CedexFrance
  3. 3.LPMC, F.S.J., Université Chouaib DoukkaliEl JadidaMaroc

Personalised recommendations