Advertisement

Study of Na+ ions influence on the charge compensating defects in CaF2: YbF3 crystals using dielectric relaxation

  • I. Nicoara
  • M. StefEmail author
Regular Article

Abstract

YbF3-doped and NaF co-doped calcium fluoride crystals were grown using the Vertical Bridgman method. Transparent colorless crystals were obtained in graphite crucible in vacuum (≈10−1 Pa) using a shaped graphite furnace. Room temperature absorption spectra and dielectric spectra were measured to study the effect of Na+ ions on the varieties of Yb3+ sites in CaF2 host. The experimental results show that by co-doping with Na+ ions in different Na:Yb ratios we can modulate the type of charge compensating defects of Yb3+ ions in CaF2 lattice. Dielectric relaxation in double doped (Yb, Na):CaF2 crystals-related with the study the charge compensating defects-was not reported before.

Keywords

Solid State and Materials 

References

  1. 1.
    J. Kirton, S.D. McLaughlan, Phys. Rev. 155, 279 (1967)ADSCrossRefGoogle Scholar
  2. 2.
    J. Corish et al., Phys. Rev. B 25, 6425 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    V. Petit et al., Phys. Rev. B 78, 085131 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    G. Boulon, J. Alloys, Compd. 451, 1 (2008)CrossRefGoogle Scholar
  5. 5.
    J.L. Doualan et al., J. Fluorine Chem. 128, 459 (2007)CrossRefGoogle Scholar
  6. 6.
    J. Boudeile et al., Optics Express 16, 10098 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    V. Petit et al., Appl. Phys. B 78, 681 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    M. Siebold et al., Appl. Phys. B 97, 327 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    L. Su et al., Opt. Lett. 30, 1003 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    L. Su et al., Chem. Phys. Lett. 406, 254 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    L. Su et al., J. Lumin. 122-123, 17 (2007)CrossRefGoogle Scholar
  12. 12.
    S.M. Kennedy, J. Lumin. 128, 680 (2008)CrossRefGoogle Scholar
  13. 13.
    A. Puglys et al., Appl. Phys. B 97, 339 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    A. Pruna et al., Phys. Status Solidi A 206, 738 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    D. Nicoara, I. Nicoara, Mater. Sci. Eng. A 102, L1 (1988)CrossRefGoogle Scholar
  16. 16.
    J. Fontanella, C. Andeen, J. Phys. C 9, 1055 (1976)ADSCrossRefGoogle Scholar
  17. 17.
    R.D. Shelley, G.R. Miller, J. Solid State Chem. 1, 218 (1970)ADSCrossRefGoogle Scholar
  18. 18.
    J.J. Fontanella et al., J. Phys. C Solid State Phys. 13, 3457 (1980)ADSCrossRefGoogle Scholar
  19. 19.
    A. Amara et al., J. Phys.: Condens. Mater. 1, 10281 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    W. Low, Phys. Rev. 118, 1608 (1960)ADSCrossRefGoogle Scholar
  21. 21.
    W. Low, Phys. Lett. 26, 234 (1968)CrossRefGoogle Scholar
  22. 22.
    M.J. Weber, R.W. Biering, Phys. Rev. 134, 1492 (1964)ADSCrossRefGoogle Scholar
  23. 23.
    J.M. Baker et al., Proc. R. Soc. Lond. A 309, 119 (1969)ADSCrossRefGoogle Scholar
  24. 24.
    J.M. Baker, E.R. Davies J. Phys. C 8, 1870 (1975)ADSGoogle Scholar
  25. 25.
    C. Andeen et al., J. Phys. C Solid State Phys. 14, 3557 (1981)ADSCrossRefGoogle Scholar
  26. 26.
    V.B. Campos, G.F. Leal Ferreira, J. Phys. Chem. Solids 35, 905 (1974)ADSCrossRefGoogle Scholar
  27. 27.
    E.L. Kitts Jr., J.H. Crawford Jr., Phys. Rev. B 9, 5264 (1974)ADSCrossRefGoogle Scholar
  28. 28.
    G.A. Smolenskii et al., Sov. Phys., Solid State 1, 150 (1959)Google Scholar
  29. 29.
    I. Nicoara et al., J. Crystal Growth 310, 2020 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    B.A. Strukov, A.P. Levanyuk, Ferroelectric Phenomena in Crystals (Springer, Berlin 1998)Google Scholar
  31. 31.
    H.B. Johnson et al., J. Phys. Chem. Solids 30, 31 (1969)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Faculty of PhysicsWest University of TimisoaraTimisoaraRomania
  2. 2.Alexandru Ioan Cuza University of IasiIasiRomania

Personalised recommendations