Advertisement

Analytic equation of state and thermodynamic properties for solid FCC C60 over a wide range of pressures and temperatures

  • W. YangEmail author
  • H. Cheng
  • J. X. Sun
  • H. Liu
  • K. Yang
  • Y. L. Zheng
Regular Article

Abstract

As an analytic approximation to the free volume theory (FVT), the analytic mean field potential (AMFP) approach is applied to the multi-exponential model solid. The analytic expressions for the equation of state (EOS) and thermodynamic quantities are derived. The formalism for the case of the double-exponential (DE) model is applied to the solid fcc C60. The four potential parameters are determined by fitting the experimental data of cohesive energy, lattice constant and compression curve of solid C60. The numerical results calculated show that the Girifalco potential is too hard and gives compression curve prominently deviated from experiments at high pressure, whereas the DE potential can well describe the thermo-physical properties of C60 system within wide pressure range. The calculated variation of lattice constant versus temperature relationship and compression curve for solid C60 by using the DE potential agree well with experimental data available. Especially the AMFP with DE potential predicted that the fcc C60 solid is stable up to 2440 K, the spinodal temperature, in good agreement with the result from molecular dynamic (MD) simulation. The AMFP is a useful approach to consider the anharmonic effects at high temperature for solid C60.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    L.A. Girifalco, J. Phys. Chem. 96, 858 (1992)CrossRefGoogle Scholar
  2. 2.
    Y. Takabayashi, A.Y. Ganin, P. Jeglic, D. Arcon, T. Takano, Y. Iwasa, Y. Ohishi, M. Takata, N. Takeshita, K. Prassides, M.J. Rosseinsky, Science 323, 1585 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    M.G. Yao, V. Pischedda, A.S. Miguel, J. Phys.: Condens. Matter 23, 115701-7 (2011)ADSGoogle Scholar
  4. 4.
    M.G. Yao, B. Sundqvist, T. Wågberg, Phys. Rev. B 79, 081403 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    M.G. Yao, V. Pischedda, B. Sundqvist, T. Wågberg, M. Mezouar, R. Debord, A.S. Miguel, Phys. Rev. B 84, 144106 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    V. Buntar, Phys. Lett. A 184, 131 (1993) ADSCrossRefGoogle Scholar
  7. 7.
    A. Cheng, M.L. Klein, C. Caccamo, Phys. Rev. Lett. 71, 1200 (1993) ADSCrossRefGoogle Scholar
  8. 8.
    M.C. Abramo, C. Caccamo, J. Phys. Chem. Solids 57, 1751 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    M.C. Abramo, C. Caccamo, D. Costa, G. Pellicane, R. Ruberto, Phys. Rev. E 69, 031112 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    L.A. Girifalco, Phys. Rev. B 52, 9910 (1995) ADSCrossRefGoogle Scholar
  11. 11.
    V.I. Zubov, N.P. Tretiakov, J.F. Sanchez, A.A. Caparica, Phys. Rev. B 53, 12080 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    V.I. Zubov, J.F. Sanchez-Ortiz, N.P. Tretiakov, I.V. Zubov, Phys. Rev. B 55, 6747 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    R.C. Shukla, E.R. Cowley, Phys. Rev. B 31, 374 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    D.J. Lacks, R.C. Shukla, Phys. Rev. B 54, 3266 (1996) ADSCrossRefGoogle Scholar
  15. 15.
    Y. Wang, D. Chen, X. Zhang, Phys. Rev. Lett. 84, 3220 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Wang, Phys. Rev. B 62, 196 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Wang, Phys. Rev. B 63, 245108 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    Y. Wang, R. Ahuja, B. Johansson, Phys. Rev. B 65, 014104 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    N.K. Bhatt, A.R. Jani, P.R. Vyas, V.B. Gohel, Physica B 357, 259 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    N.K. Bhatt, P.R. Vyas, A.R. Jani, V.B. Gohel, J. Phys. Chem. Solids 66, 797 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    J.X. Sun, L.C. Cai, Q. Wu, F.Q. Jing, Phys. Rev. B 71, 024107 (2005) CrossRefGoogle Scholar
  22. 22.
    E.R. Cowley, J. Gross, Z.X. Gong, G.K. Horton, Phys. Rev. B 42, 3135 (1990) ADSCrossRefGoogle Scholar
  23. 23.
    E. Wasserman, L. Stixrude, Phys. Rev. B 53, 8296 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    W. Yang, J.X. Sun, F. Yu, Eur. Phys. J. B 71, 211 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    D. Ben-Amotz, A.D. Gift, R.D. Levine, J. Chem. Phys. 117, 4632 (2002) ADSCrossRefGoogle Scholar
  26. 26.
    A.I. Karasevskii, W.B. Holzapfel, Phys. Rev. B 67, 224301 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    N.X. Chen, Z.D. Chen, Y.C. Wei, Phys. Rev. E 55, R5 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    T. Horikawa, T. Kinoshita, K. Suito, A. Onodera, Solid State Commun. 114, 121 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    S.J. Duclos, K. Brister, R.C. Haddon, A.R. Kortan, F.A. Theil, Nature 351, 380 (1991) ADSCrossRefGoogle Scholar
  30. 30.
    A. Lundin, B. Sundqvist, P. Skoglund, A. Fransson, S. Pettersson, Solid State Commun. 84, 879 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    W. Yang, J.X. Sun, L.G. Wang, R.G. Tian, Mod. Phys. Lett. B 22, 515 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    W. Yang, J.X. Sun, F. Yu, Braz. J. Phys. 38, 564 (2008)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • W. Yang
    • 1
    Email author
  • H. Cheng
    • 1
  • J. X. Sun
    • 2
  • H. Liu
    • 1
  • K. Yang
    • 3
  • Y. L. Zheng
    • 1
  1. 1.School of Electronic information EngineeringUniversity of ChengduChengdu, SichuanP.R. China
  2. 2.Department of Applied PhysicsUniversity of Electronic Science and TechnologySichuanP.R. China
  3. 3.Department of PhysicsA’ ba Teachers CollegeChengdu, SichuanP.R. China

Personalised recommendations