Advertisement

Geometric phase in the Kitaev honeycomb model and scaling behaviour at critical points

  • J. Lian
  • J. -Q. LiangEmail author
  • G. ChenEmail author
Regular Article
  • 175 Downloads

Abstract

In this paper a geometric phase is proposed to characterise the topological quantum phase transition of the Kitaev honeycomb model. The simultaneous rotation of two spins is crucial for generating the geometric phase for the multi-spin in a unit-cell unlike the one-spin case. It is found that the ground-state geometric phase, which is non-analytic at the critical points, possesses zigzagging behaviour in the gapless B phase of non-Abelian anyon excitations, but is a smooth function in the gapped A phase. Furthermore, the finite-size scaling behaviour of the non-analytic geometric phase along with its first- and second-order partial derivatives in the vicinity of critical points is shown to exhibit the universality. The divergent second-order derivative of the geometric phase in the thermodynamic limit indicates the typical second-order phase transition and thus the topological quantum phase transition can be well detected by the geometric phase.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    M.V. Berry, Proc. R. Soc. Lond. Ser. A 392, 45 (1984)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    M.V. Berry, Phys. Today, 43, 34 (1990) ADSCrossRefGoogle Scholar
  3. 3.
    Geometric Phases in Physics, edited by A. Shapere, F. Wilczek (World Scientific, Singapore, 1989)Google Scholar
  4. 4.
    A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger, The Geometric Phase in Quantum Systems (Springer, New York, 2003)Google Scholar
  5. 5.
    A.C.M. Carollo, J.K. Pachos, Phys. Rev. Lett. 95, 157203 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    S.L. Zhu, Phys. Rev. Lett. 96, 077206 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    A. Hamma, arXiv:quant-ph/0602091v1 (2006) Google Scholar
  8. 8.
    S.-L. Zhu, Int. J. Mod. Phys. B 22, 561 (2008)ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    G. Chen, J. Li, J.-Q. Liang, Phys. Rev. A 74, 054101 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    Y.-Q. Ma, S. Chen, Phys. Rev. A 79, 022116 (2009) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    T. Hirano, H. Katsura, Y. Hatsugai, Phys. Rev. B 77, 094431 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    J. Richert, Phys. Lett. A 372, 5352 (2008) MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    A.I. Nesterov, S.G. Ovchinnikov, Phys. Rev. E 78, R015202 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    B. Basu, Phys. Lett. A 374, 1205 (2010) ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 1999) Google Scholar
  16. 16.
    S.L. Sondhi, S.M. Girvin, J.P. Carini, D. Shahar, Rev. Mod. Phys. 69, 315 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    D.C. Tsui, H.L. Stormer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982) ADSCrossRefGoogle Scholar
  18. 18.
    R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983) ADSCrossRefGoogle Scholar
  19. 19.
    A. Kitaev, Ann. Phys. 303, 2 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    X.G. Wen, Phys. Rev. Lett. 90, 016803 (2003) ADSCrossRefGoogle Scholar
  21. 21.
    J. Yu, S.P. Kou, X.G. Wen, Europhys. Lett. 84, 17004 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    A. Kitaev, Ann. Phys. 321, 2 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    X.G. Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press, Oxford, 2004)Google Scholar
  24. 24.
    X.Y. Feng, G.M. Zhang, T. Xiang, Phys. Rev. Lett. 98, 087204 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    H.C. Jiang, Z.Y. Weng, T. Xiang, Phys. Rev. Lett. 101, 090603 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    H.D. Chen, J.P. Hu, Phys. Rev. B 76, 193101 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    H.D. Chen, Z. Nussinov, J. Phys. A 41, 075001 (2008) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    S. Yang, S.J. Gu, C.P. Sun, H.Q. Lin, Phys. Rev. A 78, 012304 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    S.J. Gu, Int. J. Mod. Phys. B 24, 4371 (2010) ADSzbMATHCrossRefGoogle Scholar
  30. 30.
    C. Nayak, S.H. Simon, A. Stern, M. Freedman, S.D. Sarma, Rev. Mod. Phys. 80, 1083 (2008) ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    K.P. Schmidt, S. Dusuel, J. Vidal, Phys. Rev. Lett. 100, 057208 (2008) ADSCrossRefGoogle Scholar
  32. 32.
    J. Vidal, K.P. Schmidt, S. Dusuel, Phys. Rev. B 78, 245121 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    G. Kells, J.K. Slingerland, J. Vala, Phys. Rev. B 80, 125415 (2009) ADSCrossRefGoogle Scholar
  34. 34.
    J.-Q. Liang, H.J.W. Müller-Kirsten, Ann. Phys. 219, 42 (1992)ADSzbMATHCrossRefGoogle Scholar
  35. 35.
    M.N. Barber, in Phase Transition and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic, New York, 1983), Vol. 8, p. 145Google Scholar
  36. 36.
    S.J. Gu, H.M. Kwok, W.Q. Ning, H.Q. Lin, Phys. Rev. B 77, 245109 (2008) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsShanxi UniversityTaiyuanP.R. China
  2. 2.State Key Laboratory of Quantum Optics and Quantum Optics DevicesShanxi UniversityTaiyuanP.R. China
  3. 3.Department of PhysicsShaoxing UniversityShaoxingP.R. China

Personalised recommendations