Advertisement

Exponential smoothing weighted correlations

  • F. PozziEmail author
  • T. Di Matteo
  • T. Aste
Regular Article

Abstract

In many practical applications, correlation matrices might be affected by the “curse of dimensionality” and by an excessive sensitiveness to outliers and remote observations. These shortcomings can cause problems of statistical robustness especially accentuated when a system of dynamic correlations over a running window is concerned. These drawbacks can be partially mitigated by assigning a structure of weights to observational events. In this paper, we discuss Pearson’s ρ and Kendall’s τ correlation matrices, weighted with an exponential smoothing, computed on moving windows using a data-set of daily returns for 300 NYSE highly capitalized companies in the period between 2001 and 2003. Criteria for jointly determining optimal weights together with the optimal length of the running window are proposed. We find that the exponential smoothing can provide more robust and reliable dynamic measures and we discuss that a careful choice of the parameters can reduce the autocorrelation of dynamic correlations whilst keeping significance and robustness of the measure. Weighted correlations are found to be smoother and recovering faster from market turbulence than their unweighted counterparts, helping also to discriminate more effectively genuine from spurious correlations.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A. Meucci, Risk and Asset Allocation (Springer-Verlag Berlin Heidelberg, 2005) http://books.google.com.au/books?id=Qc8KWWtUokcC&printsec=frontcover
  2. 2.
    R. Litterman, K. Winkelmann, Estimating covariance matrices, in Goldman Sachs, Risk Management Series (1998) Google Scholar
  3. 3.
  4. 4.
    I.A. Salama, D. Quade, A nonparametric comparison of the structure of two multiple-regression prediction situations, in Inst. of Statist. Mimeo Series (Univ. North Carolina, Chapel Hill, 1981), Vol. 1325 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.7439&rep=rep1&type=pdf
  5. 5.
    I.A. Salama, D. Quade, Commun. Stat. Theory Methods 11, 1185 (1982) http://www.informaworld.com/index/780093503.pdf URLMathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    D. Quade, I.A. Salama, A Survey of Weighted Rank Correlation, in Order Statistics and Nonparametrics: Theory and Applications, edited by P.K. Sen, I.A. Salama (Elsevier, Amsterdam, 1992), pp. 213 − 224Google Scholar
  7. 7.
    G.S. Shieh, Correlation, Weighted, in Encyclopedia of Statistical Sciences (John Wiley & Sons, Inc., 2006) http://onlinelibrary.wiley.com/book/10.1002/0471667196
  8. 8.
    J.P. Morgan/Reuters, RiskMetrics™ — Technical Document, 4th edn. (New York, 1996) http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.77.1927&rep=rep1&type=pdf
  9. 9.
    S. Pafka, M. Potters, I. Kondor, Exponential Weighting and Random-Matrix-Theory-Based Filtering of Financial Covariance Matrices for Portfolio Optimization, arXiv:cond-mat/0402573v1 [cond-mat.stat-mech] http://arxiv.org/PS˙cache/cond-mat/pdf/0402/0402573v1.pdf http://arxiv.org/abs/cond-mat/0402573
  10. 10.
    T. Hayashi, Y. Nakahiro, Bernoulli 11, 359 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    P. Malliavin, M.E. Mancino, Finance and Stochastics 6, 49 (2002) http://www.springerlink.com/content/u744ewgajpgxe7cn/ URLMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    S. Drożdż, J. Kwapień, F. Grümmer, F. Ruf, J. Speth, Physica A 299, 144 (2001) http://www.sciencedirect.com/science/article/pii/S0378437101002898 URLADSzbMATHCrossRefGoogle Scholar
  13. 13.
    S. Drożdż, F. Grümmer, F. Ruf, J. Speth, Physica A 294, 226 (2001) http://www.sciencedirect.com/science/article/pii/S0378437101001194 URLADSzbMATHCrossRefGoogle Scholar
  14. 14.
    J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertész, A. Kanto, Phys. Rev. E 68, 056110 (2003) http://pre.aps.org/abstract/PRE/v68/i5/e056110 URLADSCrossRefGoogle Scholar
  15. 15.
    L. Bauwens, S. Laurent, J.V.K. Rombouts, J. Appl. Econ. 21, 79 (2006) http://onlinelibrary.wiley.com/doi/10.1002/jae.842/full URLMathSciNetCrossRefGoogle Scholar
  16. 16.
  17. 17.
  18. 18.
    R.E. Bellman, Dynamic Programming (Princeton Univer- sity Press, New Jersey, 1957)Google Scholar
  19. 19.
    R.E. Bellman, Adaptive Control Processes: A Guided Tour (Princeton University Press, 1961)Google Scholar
  20. 20.
    K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, When is ‘Nearest Neighbor’ Meaningful?, Proceedings of 7th International Conference on Database Theory (1999), Vol. 1540, pp. 217–235 http://www.springerlink.com/content/04p94cqnbge862kh/
  21. 21.
    R.B. Marimont, M.B. Shapiro, Journal of the Institute of Mathematics and its Applications 24, 59 (1979) http://imamat.oxfordjournals.org/content/24/1/59.short URLzbMATHCrossRefGoogle Scholar
  22. 22.
    E. Chavez et al., ACM Comput. Surv. 33, 273 (2001) http://portal.acm.org/citation.cfm?id=502808 URLCrossRefGoogle Scholar
  23. 23.
  24. 24.
    J. Lee Rodgers, W. Alan Nicewander, Am. Stat. 42, 59 (1988) http://www.jstor.org/stable/2685263 URLCrossRefGoogle Scholar
  25. 25.
    F. Galton, J. Anthropol. Inst. 15, 246 (1885) http://www.jstor.org/stable/2841583 URLGoogle Scholar
  26. 26.
    K. Pearson, Roy. Soc. Proc. 58, 241 (1895)Google Scholar
  27. 27.
  28. 28.
    T.C. Cook, D.T. Campbell, Quasi-Experimentation (Houghton Mifflin, Boston, 1979) Google Scholar
  29. 29.
    H.M. Walker, Studies in the History of Statistical Method (Williams & Wilkins, Baltimore, 1929) Google Scholar
  30. 30.
  31. 31.
    C. Darwin, The Variation of Animals and Plants under Domestication (John Murray, London, 1868) http://darwin-online.org.uk/EditorialIntroductions/Freeman˙VariationunderDomestication.html http://www.gutenberg.org/etext/3332
  32. 32.
    A. Kraskov, H. Stögbauer, P. Grassberger, Phys. Rev. E 69, 066138 (2004) http://pre.aps.org/abstract/PRE/v69/i6/e066138 URLMathSciNetADSCrossRefGoogle Scholar
  33. 33.
    A. Kraskov, H. Stögbauer, R.G. Andrzejak, P. Grassberger, Europhys. Lett. 70, 278 (2005) http://iopscience.iop.org/0295-5075/70/2/278 URLMathSciNetADSCrossRefGoogle Scholar
  34. 34.
  35. 35.
    M.G. Kendall, Rank Correlation Methods (Charles Griffin & Co. Ltd., London, 1948)Google Scholar
  36. 36.
    W.H. Kruskal, J. Am. Stat. Assoc. 53, 814 (1958) http://www.jstor.org/stable/2281954 URLMathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    W.R. Knight, J. Am. Stat. Assoc. 61, 436 (1966) http://www.jstor.org/stable/2282833 URLzbMATHCrossRefGoogle Scholar
  38. 38.
  39. 39.
    V.D. Skintzi, A.-P.N. Refenes, J. Futures Mark. 25, 171 (2005) http://papers.ssrn.com/sol3/papers.cfm?abstract˙id=460080 URLCrossRefGoogle Scholar
  40. 40.
    Y.H. Cho, R. Engle, Time-Varying Betas and Asymmetric Effects of News: Empirical Analysis of Blue Chip Stocks, Working paper No. 7730, National Bureau of Economic Research, Cambridge, 1999 http://papers.ssrn.com/sol3/delivery.cfm/nber˙W7330.pdf?abstractid=196388 http://papers.ssrn.com/sol3/papers.cfm?abstract˙id=196388
  41. 41.
    T. Andersen, T. Bollerslev, F. Diebold, H. Ebens, J. Financ. Econ. 61, 43 (2001) http://linkinghub.elsevier.com/retrieve/pii/S0304405X01000551 URLCrossRefGoogle Scholar
  42. 42.
    T. Andersen, T. Bollerslev, F. Diebold, P. Labys, J. Am. Stat. Assoc. 96, 42 (2001) http://www.jstor.org/stable/2670339 URLMathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    E. Sheedy, J. Int. Financ. Mark. Inst. Money 8, 59 (1998) http://linkinghub.elsevier.com/retrieve/pii/S1042443198000249 URLCrossRefGoogle Scholar
  44. 44.
    B. Solnik, C. Bourcell, Y. Le Fur, Financ. Anal. J. 5, 17 (1996) http://www.cfapubs.org/doi/ref/10.2469/faj.v52.n5.2021
  45. 45.
    L. Ramchand, R. Susmel, J. Empir. Finance 5, 397 (1998) http://linkinghub.elsevier.com/retrieve/pii/S0927539898000036 URLCrossRefGoogle Scholar
  46. 46.
  47. 47.
    C.B. Erb, C.R. Harvey, E. Viskanta, Financ. Anal. J. 6, 32 (1994) http://www.jstor.org/stable/4479787 URLCrossRefGoogle Scholar
  48. 48.
  49. 49.
  50. 50.
    G.M. von Fustenberg, B.N. Jeon, N.G. Mankiw, R.J. Shiller, Papers on Economic Activity 1, 125 (1989) http://www.jstor.org/stable/2534497 URLCrossRefGoogle Scholar
  51. 51.
    P.D. Koch, T.W. Koch, J. Int. Money Financ. 10, 231 (1991)CrossRefGoogle Scholar
  52. 52.
    C. Borghesi, M. Marsili, S. Miccichè, Phys. Rev. E 76, 026104 (2007) http://pre.aps.org/abstract/PRE/v76/i2/e026104 URLMathSciNetADSCrossRefGoogle Scholar
  53. 53.
    M. Lundin, M.M. Dacorogna, U.A. Muller, Correlation of high frequency financial time series, in The financial markets tick-by-tick, edited by P. Lequeux (Wiley, London, 1999) http://ssrn.com/abstract=79848
  54. 54.
  55. 55.
    R. Newson, The Stata Journal 1, 1 (2001)Google Scholar
  56. 56.
    C. Stein, Inadmissibility of the usual estimator for the mean of a multivariate distribution, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, edited by J. Neyman (Univ. California Press, Berkeley, 1956), pp. 197–206 http://www.stat.yale.edu/˜hz68/619/Stein-1956.pdf
  57. 57.
    O. Ledoit, M. Wolf, J. Portfolio Manag. 30, 110 (2004) http://papers.ssrn.com/sol3/papers.cfm?abstract˙id=433840 URLCrossRefGoogle Scholar
  58. 58.
    J. Schäfer, K. Strimmer, Statistical Applications in Genetics and Molecular Biology 4 (2005) http://ideas.repec.org/a/bpj/sagmbi/v4y2005i1n32.html
  59. 59.
    D.J. Disatnik, S. Benninga, J. Portfolio Manag. 33, 55 (2007)CrossRefGoogle Scholar
  60. 60.
    J.-P. Bouchaud, M. Potters, Financial Applications of Random Matrix Theory: a short review (2009), arXiv:0910.1205v1 http://arxiv.org/pdf/0910.1205.pdf
  61. 61.
    C.C.Y. Kwan, Spreadsheets in Education (eJSiE) 4 (2011) http://epublications.bond.edu.au/ejsie/vol4/iss3/6
  62. 62.
    E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK User’s Guide, 3rd edn. (SIAM, Philadelphia, 1999) http://www.netlib.org/lapack/lug/lapack˙lug.html
  63. 63.
    F. Pozzi, T. Aste, G. Rotundo, T. Di Matteo, Proc. SPIE 6802, E68021 (2008) CrossRefGoogle Scholar
  64. 64.
    F. Pozzi, T. Di Matteo, T. Aste, Advances in Complex Systems 11, 927 (2008) http://papers.ssrn.com/sol3/papers.cfm?abstract˙id=1512367 URLzbMATHCrossRefGoogle Scholar
  65. 65.
    T. Di Matteo, F. Pozzi, T. Aste, Eur. Phys. J. B 73, 3 (2009) http://www.springerlink.com/content/f4p405558326881j/ URLCrossRefGoogle Scholar
  66. 66.
    F. Pozzi, T. Aste, W. Shaw, T. Di Matteo, The use of topological quantities to detect hierarchical properties in financial markets: the Financial sector in NYSE, Proceedings of 10th WSEAS international conference on Mathematics and computers in business and economics, Recent Advances in Computer Engineering (2009), pp. 301–304 http://www.wseas.us/e-library/conferences/2009/prague/MCBE/MCBE51.pdf
  67. 67.
    T. Aste, W. Shaw, T. Di Matteo, New J. Phys. 12, 085009 (2010) http://iopscience.iop.org/1367-2630/12/8/085009 URLADSCrossRefGoogle Scholar
  68. 68.
    J. Hadamard, Leçons sur la Propagation des Ondes et les Équations de l’Hydrodynamique (Hermann, Paris, 1903)Google Scholar
  69. 69.
  70. 70.
    P.R. Halmos, Finite-Dimensional Vector Spaces (Princeton University Press, 1948)Google Scholar
  71. 71.
  72. 72.
    M. Marcus, Basic Theorems in Matrix Theory, in National Bureau of Standards, Applied Mathematics Series (US Government Printing Office, Washington, D.C., 1960), Vol. 57 Google Scholar
  73. 73.
    L. Mirsky, An Introduction to Linear Algebra (Oxford University Press, 1955) http://books.google.com.au/books?id=ULMmheb26ZcC&printsec=frontcover
  74. 74.
    R.A. Horn, C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, 1994), Chap. 5, pp. 299–381 Google Scholar
  75. 75.
    S. Barnett, Matrices, Methods and Applications (Oxford University Press, New York, 1990) http://books.google.com.au/books?id=lfKM5C˙1hsYC&printsec=frontcover
  76. 76.
    R.A. Beezer, A First Course in Linear Algebra, 1.08 edn. (2007) http://linear.ups.edu/download.html http://linear.ups.edu/
  77. 77.
  78. 78.
  79. 79.
    S.I. Ramanujan, Collected Papers (Cambridge University Press, Cambridge, 1927)Google Scholar
  80. 80.
    D.E. Knuth, The art of computer programming(Addison Wesley Longman, 1997), 3rd edn., Vol. 1 http://books.google.com.au/books?id=-nxGAAAAYAAJ&q=The+art+of+computer+programming
  81. 81.
    R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, 2nd edn. (Addison-Wesley, 1994) http://books.google.com.au/books?id=cjgPAQAAMAAJ&q=Concrete+Mathematics

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Research School of Physical SciencesThe Australian National UniversityCanberraAustralia
  2. 2.Department of MathematicsKing’s College LondonLondonUK
  3. 3.School of Physical SciencesUniversity of KentKentUK

Personalised recommendations