Advertisement

Magneto-optical imaging of elastic strain-controlled magnetization reorientation

  • A. Brandlmaier
  • M. Brasse
  • S. Geprägs
  • M. Weiler
  • R. Gross
  • S. T. B. Goennenwein
Regular Article

Abstract

We study strain-controlled magnetization-reorientation processes in nickel thin film/piezoelectric actuator hybrid structures. To obtain a consistent picture of the connection between magnetic microstructure and magnetoresistance, we correlate simultaneously measured spatially resolved magneto-optical Kerr effect imaging and integral magnetotransport measurements at room temperature. Our results show that the magnetization predominantly reorients by coherent rotation as a function of the voltage applied to the hybrid, except for a narrow region around the coercive field for which the magnetization reorientation evolves via domain effects. This demonstrates that both magnetic-field and strain-driven magnetization reversal can be modeled in terms of a macrospin model.

Keywords

Solid State and Materials 

References

  1. 1.
    R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    M. Fiebig, J. Phys. D 38, R123 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    T. Zhao et al., Nat. Mater. 5, 823 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    F. Zavaliche et al., Nano Lett. 5, 1793 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Y.H. Chu et al., Nat. Mater. 7, 478 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    S.M. Wu, S.A. Cybart, P. Yu, M.D. Rossell, J.X. Zhang, R. Ramesh, R.C. Dynes, Nat. Mater. 9, 756 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    M. Bibes, A. Barthélémy, Nat. Mater. 7, 425 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    C. Binek, B. Doudin, J. Phys.: Condens. Matter 17, L39 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    I. Stolichnov, S.W.E. Riester, H.J. Trodahl, N. Setter, A.W. Rushforth, K.W. Edmonds, R.P. Campion, C.T. Foxon, B.L. Gallagher, T. Jungwirth, Nat. Mater. 7, 464 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    S. Mathews, R. Ramesh, T. Venkatesan, J. Benedetto, Science 276, 238 (1997)CrossRefGoogle Scholar
  12. 12.
    T. Brintlinger, S.H. Lim, K.H. Baloch, P. Alexander, Y. Qi, J. Barry, J. Melngailis, L. Salamanca-Riba, I. Takeuchi, J. Cumings, Nano Lett. 10, 1219 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    T. Taniyama, K. Akasaka, D. Fu, M. Itoh, H. Takashima, B. Prijamboedi, J. Appl. Phys. 101, 09F512 (2007)CrossRefGoogle Scholar
  14. 14.
    T.K. Chung, G.P. Carman, K.P. Mohanchandra, Appl. Phys. Lett. 92, 112509 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    T.K. Chung, S. Keller, G.P. Carman, Appl. Phys. Lett. 94, 132501 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    S.H. Xie, Y.M. Liu, X.Y. Liu, Q.F. Zhou, K.K. Shung, Y.C. Zhou, J.Y. Li, J. Appl. Phys. 108, 054108 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    W. Eerenstein, M. Wiora, J.L. Prieto, J.F. Scott, N.D. Mathur, Nat. Mater. 6, 348 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    C. Thiele, K. Dörr, O. Bilani, J. Rödel, L. Schultz, Phys. Rev. B 75, 054408 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    C. Israel, N.D. Mathur, J.F. Scott, Nat. Mater. 7, 93 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    S. Sahoo, S. Polisetty, C.G. Duan, S.S. Jaswal, E.Y. Tsymbal, C. Binek, Phys. Rev. B 76, 092108 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    H. Zheng et al., Science 303, 661 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    S. Geprägs, A. Brandlmaier, M. Opel, R. Gross, S.T.B. Goennenwein, Appl. Phys. Lett. 96, 142509 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    M. Liu et al., Adv. Funct. Mater. 19, 1826 (2009)CrossRefGoogle Scholar
  25. 25.
    Y. Chen, T. Fitchorov, C. Vittoria, V.G. Harris, Appl. Phys. Lett. 97, 052502 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    S.K. Kim, J.W. Lee, S.C. Shin, H.W. Song, C.H. Lee, K. No, J. Magn. Magn. Mater. 267, 127 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    H. Boukari, C. Cavaco, W. Eyckmans, L. Lagae, G. Borghs, J. Appl. Phys. 101, 054903 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Chen, J. Gao, T. Fitchorov, Z. Cai, K.S. Ziemer, C. Vittoria, V.G. Harris, Appl. Phys. Lett. 94, 082504 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    S. Geprägs, M. Opel, S.T.B. Goennenwein, R. Gross, Philos. Mag. Lett. 87, 141 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    A. Brandlmaier et al., Phys. Rev. B 77, 104445 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    C. Bihler et al., Phys. Rev. B 78, 045203 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    S.T.B. Goennenwein, M. Althammer, C. Bihler, A. Brandlmaier, S. Geprägs, M. Opel, W. Schoch, W. Limmer, R. Gross, M.S. Brandt, Phys. Stat. Sol. 2, 96 (2008)Google Scholar
  33. 33.
    M. Weiler, A. Brandlmaier, S. Geprägs, M. Althammer, M. Opel, C. Bihler, H. Huebl, M.S. Brandt, R. Gross, S.T.B. Goennenwein, New J. Phys. 11, 013021 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    J.M. Leger, C. Loriers-Susse, B. Vodar, Phys. Rev. B 6, 4250 (1972)ADSCrossRefGoogle Scholar
  35. 35.
    R. Pauthenet, J. Appl. Phys. 53, 2029 (1982)ADSCrossRefGoogle Scholar
  36. 36.
    E.W. Lee, Rep. Prog. Phys. 18, 184 (1955)ADSCrossRefGoogle Scholar
  37. 37.
    T. McGuire, R. Potter, IEEE Trans. Magn. 11, 1018 (1975)ADSCrossRefGoogle Scholar
  38. 38.
    Low voltage co-fired multilayer stacks, rings and chips for actuation (Piezomechanik GmbH, Germany, 2010)Google Scholar
  39. 39.
    E.C. Stoner, E.P. Wohlfarth, Philos. Trans. R. Soc. Lond. A 240, 599 (1948)ADSMATHCrossRefGoogle Scholar
  40. 40.
    S. Chikazumi, Physics of Ferromagnetism, 2nd edn. (Oxford University Press, New York, 1997)Google Scholar
  41. 41.
    A.H. Morrish, The Physical Principles of Magnetism (IEEE Press, 2001)Google Scholar
  42. 42.
    F. Schmidt, W. Rave, A. Hubert, IEEE Trans. Magn. 21, 1596 (1985)ADSCrossRefGoogle Scholar
  43. 43.
    J.M. Florczak, E.D. Dahlberg, Phys. Rev. B 44, 9338 (1991)ADSCrossRefGoogle Scholar
  44. 44.
    S.S. Yan, W.J. Liu, J.L. Weston, G. Zangari, J.A. Barnard, Phys. Rev. B 63, 174415 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    A. Brandlmaier, S. Geprägs, G. Woltersdorf, R. Gross, S.T.B. Goennenwein, J. Appl. Phys. 110, 043913 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    A.D. Kent, J. Yu, U. Rüdiger, S.S.P. Parkin, J. Phys.: Condens. Matter 13, R461 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    U. Rüdiger, J. Yu, L. Thomas, S.S.P. Parkin, A.D. Kent, Phys. Rev. B 59, 11914 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    W. Gil, D. Görlitz, M. Horisberger, J. Kötzler, Phys. Rev. B 72, 134401 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    M. Weiler, F.D. Czeschka, A. Brandlmaier, I.M. Imort, G. Reiss, A. Thomas, G. Woltersdorf, R. Gross, S.T.B. Goennenwein, Appl. Phys. Lett. 98, 042501 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    H. Ohkita, K. Ishibashi, D. Tsurumoto, A. Tagaya, Y. Koike, Appl. Phys. A 81, 617 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Brandlmaier
    • 1
  • M. Brasse
    • 1
  • S. Geprägs
    • 1
  • M. Weiler
    • 1
  • R. Gross
    • 1
    • 2
  • S. T. B. Goennenwein
    • 1
    • 2
  1. 1.Walther-Meißner-InstitutBayerische Akademie der WissenschaftenGarchingGermany
  2. 2.Physik-Department E23Technische Universität MünchenGarchingGermany

Personalised recommendations