Advertisement

First-principles study of electronic, dynamical and thermodynamic properties of Li2TiO3

  • Z. Wan
  • Y. Yu
  • H. F. Zhang
  • T. GaoEmail author
  • X. J. Chen
  • C. J. Xiao
Regular Article

Abstract

The first-principles total energy calculations with the generalised gradient approximation and the plane-wave pseudopotential method have been employed to investigate the structural, electronic and dynamical properties of Li2TiO3 (lithium titanate). The atomic structure is fully relaxed, and the structural parameters are found to differ by less than 1% from the experimental data. The indirect band-gap with 3.49 eV is predicted from the band structure calculations of this compound. The calculated phonon frequencies at the Γ-point for the Raman-active and the infrared-active modes are presented and assigned. The phonon dispersion curves are also calculated along high symmetry lines in the Brillouin zone (BZ). Furthermore, the thermodynamic functions have been worked out using the corresponding phonon density of states, and the results indicate that they are in good agreement with available experimental values.

Keywords

Computational Methods 

References

  1. 1.
    C.E. Johnson, CERAM Int. 17, 253 (1991)CrossRefGoogle Scholar
  2. 2.
    S. Saito, K. Tsuchiya, H. Kawamura, T. Terai, S. Tanaka, J. Nucl. Mater. 253, 213 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    M. Vijayakumar, S. Kerisit, Z. Yang, G.L. Graff, J. Liu, J.A. Sears, S.D. Burton, K.M. Rosso, J. Hu, J. Phys. Chem. C 113, 20108 (2009) CrossRefGoogle Scholar
  4. 4.
    J.D. Lulewicz, N. Roux, J. Nucl. Mater. 307, 803 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    Xiangwei Wu, Zhaoyin Wen, Jinduo Han, Xiaoxiong Xu, Bin Lin, Fus. Eng. Des. 83, 112 (2008)CrossRefGoogle Scholar
  6. 6.
    T. Nakazawa, A. Naito, T. Aruga, V. Grismanovs, Y. Chimi, A. Iwasec, S. Jitsukawa, J. Nucl. Mater. 367, 1398 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    H. Kleykamp, Fus. Eng. Des. 61, 361 (2002)CrossRefGoogle Scholar
  8. 8.
    H. Kleykamp, J. Nucl. Mater. 295, 244 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    J.W. Davis, A.A. Haasz, J. Nucl. Mater. 232, 65 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    T. Kinjyo, M. Nishikawa, M. Enoeda, S. Fukada, Fus. Eng. Des. 83, 580 (2008)CrossRefGoogle Scholar
  11. 11.
    K. Munakata, Y. Yokoyama, A. Baba, T. Kawagoe, T. Takeishi, M. Nishikawa, R.D. Pnzhorn, H. Moriyma, K. Kawamoto, Y. Morimoto, K. Okuno, Fus. Eng. Des. 58, 683 (2001)CrossRefGoogle Scholar
  12. 12.
    R.E. Avila, L.A. Peña, J.C. Jiménez, J. Nucl. Mater. 405, 244 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    T. Kawagoe, M. Nishikawa, A. Baba, S. Beloglazov, J. Nucl. Mater. 297, 27 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    L. Padilla-Campos, J. Mol. Struct. 580, 101 (2002) Google Scholar
  15. 15.
    S.T. Murphy, P. Zeller, A. Chartier, L. Van Brutzel, J. Phys. Chem. C 115, 21874 (2011) CrossRefGoogle Scholar
  16. 16.
    V.M. Zainullina, V.P. Zhukov, T.A. Denisova, L.G. Maksimova, J. Struct. Chem. 44, 180 (2003)CrossRefGoogle Scholar
  17. 17.
    X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.Y. Raty, D.C. Allan, Comput. Mater. Sci. 25, 478 (2002)CrossRefGoogle Scholar
  18. 18.
    J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  19. 19.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991) ADSCrossRefGoogle Scholar
  20. 20.
    M. Akdoğan, R. Eryiğit, J. Phys.: Condens. Matter 14, 7493 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    S. Baroni, S. de Gironcoli, A.D. Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    X. Gonze, Phys. Rev. B 55, 10337 (1997) ADSCrossRefGoogle Scholar
  23. 23.
    X. Gonze, C. Lee, Phys. Rev. B 55, 10355 (1997) ADSCrossRefGoogle Scholar
  24. 24.
    G. Izquierdo, A.R. West, Mater. Res. Bull. 15, 1655 (1980) CrossRefGoogle Scholar
  25. 25.
    J.C. Mikkelsen, J. Am. Ceram. Soc. 63, 331 (1980)CrossRefGoogle Scholar
  26. 26.
    C. Gicquel, M. Mayer, R. Bouaziz, C. R. Ser. C 275, 1427 (1972) Google Scholar
  27. 27.
    A.U. Christensen, K.C. Conway, K.K. Kelley, Report BMRI 5565, (1960)Google Scholar
  28. 28.
    G. Lang, Z. Anorg. Allg. Chem. 276, 77 (1954)CrossRefGoogle Scholar
  29. 29.
    J.F. Dorrian, R.E. Newnham, Mater. Res. Bull. 4, 179 (1969)CrossRefGoogle Scholar
  30. 30.
    K. Kataoka, Yasuhiko Takahashi, Mater. Res. Bull. 44, 168 (2009)CrossRefGoogle Scholar
  31. 31.
    V. Chauvaut, M. Cassir, J. Electroanal. Chem. 474, 9 (1999)CrossRefGoogle Scholar
  32. 32.
    V. Martin, Private communicationGoogle Scholar
  33. 33.
    H.Y. Wang, H. Xu, T.T. Huang, C.S. Deng, Eur. Phys. J. B 62, 39 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    P.-E. Lippens, M. Womes, P. Kubiak, J.-C. Jumas, J. Olivier-Fourcade, Solid State Sci. 6, 161 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    K. Parlinski, J. Łażewski, Y. Kawazoe, J. Phys. Chem. Solids 61, 87 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    Masayoshi Mikami, Shinichiro Nakamura, Phys. Rev. B 65, 094302 (2002) ADSCrossRefGoogle Scholar
  37. 37.
    A.A. Maradudin et al., in Solid State Physics, edited by Ehrenreich, 2nd edn. (Academic, New York, 1971) Google Scholar
  38. 38.
    H.B. Callen, Thermodynamics and An Introduction to Thermostatistics (Wiley, New York, 1985)Google Scholar
  39. 39.
    I. Barin, Thermochemical Data of Pure Substances, 3rd edn. (VCH, New York, 1995)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Z. Wan
    • 1
  • Y. Yu
    • 1
  • H. F. Zhang
    • 1
  • T. Gao
    • 1
    Email author
  • X. J. Chen
    • 2
  • C. J. Xiao
    • 2
  1. 1.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduP.R. China
  2. 2.Institute of Nuclear Physics and ChemistryChina Academy of Engineering PhysicsMianyangP.R. China

Personalised recommendations