Advanced theory of multiple exciton generation effect in quantum dots

  • B. L. Oksengendler
  • N. N. TuraevaEmail author
  • S. S. Rashidova
Regular Article
Part of the following topical collections:
  1. Topical issue: From photophysics to optoelectronics of zero- and one-dimensional nanomaterials


The theoretical aspects of the effect of multiple exciton generation (MEG) in quantum dots (QDs) have been analysed in this work. The statistical theory of MEG in QDs based on Fermi’s approach is presented, taking into account the momentum conservation law. According to Fermi this approach should give the ultimate quantum efficiencies of multiple particle generation. The microscopic mechanism of this effect is based on the theory of electronic “shaking”. According to this approach, the wave function of “shaking” electrons can be selected as Plato’s functions with effective charges depending on the number of generated excitons. From the theory it is known increasing the number of excitons leads to enhancement of the Auger recombination of electrons which results in reduced quantum yields of excitons. The deviation of the averaged multiplicity of the MEG effect from the Poisson law of fluctuations has been investigated on the basis of synergetics approaches. In addition the role of interface electronic states of QDs and ligands has been considered by means of quantum mechanical approaches. The size optimisation of QDs has been performed to maximise the multiplicity of the MEG effect.


Topical issue: From photophysics to optoelectronics of zero- and one-dimensional nanomaterials 


  1. 1.
    A. Nozik, J. Physica E 14, 115 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    R. Schaller, V.I. Klimov, Phys. Rev. Lett. 92, 186601 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    A.J. Nozik et al., Nano Lett. 10, 3019 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    R.J. Ellingson et al., Nano Lett. 5, 865 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    M.T. Trinh et al., Nano Lett. 8, 1713 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    G. Nair, S.M. Geyer, L.Y. Chang, M.G. Bawendi, Phys. Rev. B 78, 10 (2008)CrossRefGoogle Scholar
  7. 7.
    R.D. Schaller, M. Sykora, J.M. Pietryga, V.I. Klimov, Nano Lett. 6, 424 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    J.E. Murphy et al. J. Am. Chem. Soc. 128, 3241 (2006)CrossRefGoogle Scholar
  9. 9.
    M.C. Beard et al., Nano Lett. 7, 2506 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    M.C. Beard et al., Nano Lett. 9, 836 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    V.I. Klimov et al., Nano Lett. 10, 2049 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    R.D. Schaller, V.M. Agranovich, V.I. Klimov, Nature Phys. 1, 189 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    A. Franceschetti, J. Anh, A. Zunger, Nano Lett. 6, 2191 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    R. Ellingson, M. Beard, J. Jonson, Nano Lett. 5, 865 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    B. Oksengendler, N. Turaeva, S. Rashidova, Appl. Sol. Energy 3, 36 (2009)Google Scholar
  16. 16.
    B.L. Oksengendler, N.N. Turaeva, A. Zakhidov, in Complex Phenomena in Nanoscale Systems, edited by G. Casati, D. Matrasulov (Springer, 2009), p. 223Google Scholar
  17. 17.
    E. Fermi, Progr. Theor. Phys. 5, 570 (1950)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Y. Kayanuma, Phys. Rev. B 38, 9797 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    N.N. Turaeva, B.L. Oksengendler, I. Uralov, Appl. Phys. Lett. 98, 243103 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    V.I. Matveev, E.S. Parilis, Uzp. Phys. Nauk 138, 573 (1982)CrossRefGoogle Scholar
  21. 21.
    L.D. Landau, E.M. Lifshits, in Quantum Mechanics. Theoretical Physics III (Nauka, Moscow, 1974), p. 752Google Scholar
  22. 22.
    P. Gombas, in Theorie und Lösungsmethoden des Mehrteilchenproblems der Wellenmechanik (Basel, 1950), p. 252Google Scholar
  23. 23.
    M.O. Krause, T.A. Carlson, R.D. Dismuskes, Phys. Rev. 170, 37 (1968)ADSCrossRefGoogle Scholar
  24. 24.
    B.L. Oksengendler, N.N. Turaeva, D. Azimov, Uzbek J. Phys. 3, 37 (2010)Google Scholar
  25. 25.
    B.L. Oksengendler, N.N. Turaeva, Doklady Physics 434, 1 (2010)Google Scholar
  26. 26.
    G. Nicolis, I.R. Prigogine, in Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977)Google Scholar
  27. 27.
    R.D. Schaller, V.I. Klimov, Phys. Rev. Lett. 96, 097402 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    D. Timmerman, T. Gregorkiewicz, Mat. Sci. Eng. B 159-160, 87 (2009)CrossRefGoogle Scholar
  29. 29.
    B.L. Oksengendler et al., J. Exp. Theor. Phys. 111, 415 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • B. L. Oksengendler
    • 1
  • N. N. Turaeva
    • 1
    Email author
  • S. S. Rashidova
    • 1
  1. 1.Institute of Polymer Chemistry and Physics Academy of Sciences of UzbekistanTashkentUzbekistan

Personalised recommendations