Advertisement

The European Physical Journal B

, Volume 84, Issue 2, pp 323–329 | Cite as

The role of soft versus hard bistable systems on stochastic resonance using average cycle energy as a quantifier

  • S. Rana
  • S. LahiriEmail author
  • A. M. Jayannavar
Regular Article Statistical and Nonlinear Physics

Abstract

Using the input energy per cycle as a quantifier of stochastic resonance (SR), we show that SR is observed in superharmonic (hard) potentials. However, it is not observed in subharmonic (soft) potentials, even though the potential is bistable. These results are consistent with recent observations based on amplitude of average position as a quantifier. In both soft and hard potentials, we observe resonance phenomenon as a function of the driving frequency. The nature of probability distributions of average work are qualitatively different for soft and hard potentials.

Keywords

Barrier Height Stochastic Resonance Average Work Escape Rate Noise Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)CrossRefADSGoogle Scholar
  2. 2.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Eur. Phys. J. B 69, 13 (2009), Special issue on stochastic resonanceCrossRefGoogle Scholar
  3. 3.
    K. Wiesenfeld, F. Moss, Nature 373, 33 (1995)CrossRefADSGoogle Scholar
  4. 4.
    F. Moss, K. Wiesenfeld, Sci. Am. 273, 66 (1995)CrossRefGoogle Scholar
  5. 5.
    H. Risken, The Fokker-Planck Equation, 2nd edn. (Springer, 1989)Google Scholar
  6. 6.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)CrossRefzbMATHADSMathSciNetGoogle Scholar
  7. 7.
    P. Jung, P. Hänggi, Europhys. Lett. 8, 505 (1989)CrossRefADSGoogle Scholar
  8. 8.
    P. Jung, P. Hänggi, Phys. Rev. A 44, 8032 (1991) CrossRefADSGoogle Scholar
  9. 9.
    M. Evstigneev, P. Reimann, C. Schmitt, C. Bechinger, J. Phys.: Condens. Matter 17, S3795 (2005) CrossRefADSGoogle Scholar
  10. 10.
    T. Iwai, Physica A 300, 350 (2001) CrossRefzbMATHADSMathSciNetGoogle Scholar
  11. 11.
    D. Dan, A.M. Jayannavar, Physica A 345, 404 (2005) CrossRefADSGoogle Scholar
  12. 12.
    M. Sahoo, S. Saikia, M.C. Mahato, A.M. Jayannavar, Physica A 387, 6284 (2008) CrossRefADSGoogle Scholar
  13. 13.
    S. Saikia, R. Roy, A.M. Jayannavar, Phys. Lett. A 369, 367 (2007) CrossRefADSGoogle Scholar
  14. 14.
    E. Heinsalu, M. Patriarca, F. Marchesoni, Eur. Phys. J. B 69, 19 (2009)CrossRefADSGoogle Scholar
  15. 15.
    M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011)CrossRefADSGoogle Scholar
  16. 16.
    K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)CrossRefADSGoogle Scholar
  17. 17.
    R. Mannela, Lecture Notes in Physics (Springer-Verlag, Berlin, 2000), Vol. 557, p. 353 Google Scholar
  18. 18.
    M.I. Dykman, R. Mannella, Phys. Rev. Lett. 68, 2985 (1992) CrossRefADSGoogle Scholar
  19. 19.
    P. Jung, P. Hänggi, Z. Phys. B 90, 255 (1993)CrossRefADSGoogle Scholar
  20. 20.
    V. Berdichevsky, M. Gitterman, J. Phys. A 29, L447 (1996) CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    J.A. Freund, L. Schimansky-Geier, P. Hänggi, Chaos 13, 225 (2003)CrossRefzbMATHADSMathSciNetGoogle Scholar
  22. 22.
    P. Jung, F. Marchesoni, to be published in Chaos (2011)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of PhysicsSachivalaya MargBhubaneswarIndia

Personalised recommendations