Advertisement

On the generalized stacking energy, core structure and Peierls stress of the \(\frac{1} {2}\left\langle {110} \right\rangle \left\{ {110} \right\}\) dislocations in alkali halide

  • L. Liu
  • X. Z. WuEmail author
  • R. Wang
  • H. F. Feng
  • S. Wu
Regular Article

Abstract

Using the improved P-N theory in which the lattice discrete effect is taken into account, the core width and Peierls stress of the \(\frac{1} {2}\left\langle {110} \right\rangle \left\{ {110} \right\}\) dislocations in NaCl structure alkali halide have been investigated with the generalized stacking fault energy calculated by the ab initio calculation. The anisotropic of elasticity are taken into account while calculation the lattice discrete correction coefficient and the energy coefficient for dislocations. The discrete effect leads to a wider dislocation core in the improved P-N theory than that in the P-N theory. The obtained Peierls stress are in agreement with the existing experimental results. The predicted Peierls stress for edge dislocations in LiF and NaCl are 0.13 × 10−3 μ and 0.46 × 10−3 μ, respectively. The corresponding experimental values are 0.16 × 10−3 μ and 0.50 × 10−3 μ. It is also found that the Peierls stress and the anisotropic factor decrease with the increasing radius of the positive ion for the same negative ion in alkali halide.

Keywords

Solid State and Materials 

References

  1. 1.
    F. Granzer, G. Wagner, J. Eisenblätter, Phys. Solid State 30, 587 (1968)CrossRefGoogle Scholar
  2. 2.
    Z.S. Basinski, M.S. Duesbery, R. Taylor, in Interatomic Potentials and Simulation of Lattice Defects (Plenum Press, New York, 1972), p. 537Google Scholar
  3. 3.
    V. Vitek, Crystal Lattice Defects 5, 1 (1974)Google Scholar
  4. 4.
    R.G. Hoagland, J.P. Hirth, P.C. Gehlen, Phil. Mag. 34, 413 (1976)ADSCrossRefGoogle Scholar
  5. 5.
    C.H. Woo, M.P. Puls, J. Phys. C 9, 127 (1976)CrossRefGoogle Scholar
  6. 6.
    M.P. Puls, M.J. Norgett, J. Appl. Phys. 47, 466 (1976)ADSCrossRefGoogle Scholar
  7. 7.
    M.P. Puls, C.B. So, Phys. Stat. Sol. B 98, 87 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    J.R. Tesh, R.W. Whitworth, Phys. Solid State 39, 627 (1970)CrossRefGoogle Scholar
  9. 9.
    A. Ikushima, T. Suzuki, J. Phys. Soc. Jpn Suppl. I 18, 163 (1963)Google Scholar
  10. 10.
    G. Schoeck, Mater. Sci. Eng. A 400-401, 7 (2005) CrossRefGoogle Scholar
  11. 11.
    D.B. Zhang, T.C. Wang, Y.G. Wei, Conferenece on Heterogeneous Mater. Mech. (2008), p. 21 Google Scholar
  12. 12.
    B. Joós, Q. Ren, M.S. Duesbery, Phys. Rev. B 50, 5890 (1994) ADSCrossRefGoogle Scholar
  13. 13.
    F.R.N. Nabarro, Philos. Mag. A 75, 703 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    G. Lu et al., Phys. Rev. B 62, 3099 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    Y. Xiang et al., Acta Mater. 56, 1447 (2008) CrossRefGoogle Scholar
  16. 16.
    S.F. Wang, Chinese Phys. 14, 2575 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    S.F. Wang, J. Phys. A Math. Theor. 42, 025208 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    O.N. Mryasov, Y.N. Gornostyrev, A.J. Freeman, Phys. Rev. B 58, 11927 (1998) ADSCrossRefGoogle Scholar
  19. 19.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994) ADSCrossRefGoogle Scholar
  21. 21.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  22. 22.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  23. 23.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) ADSCrossRefGoogle Scholar
  25. 25.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  26. 26.
    N.A.W. Holzwarth et al., Phys. Rev. B 55, 2005 (1997) ADSCrossRefGoogle Scholar
  27. 27.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    J. Hartford et al., Phys. Rev. B 58, 2487 (1998) ADSCrossRefGoogle Scholar
  29. 29.
    M.P. Tosi, Solid State Phys. 16, 1 (1964)CrossRefGoogle Scholar
  30. 30.
    S. Haussühl, Z. Phys. 159, 223 (1960) ADSCrossRefGoogle Scholar
  31. 31.
    K. Sprangenberg, S. Haussühl, Z. Kristallogr. 109, 422 (1957) CrossRefGoogle Scholar
  32. 32.
    R.E. Peierls, Proc. Phys. Soc. 52, 23 (1940)CrossRefGoogle Scholar
  33. 33.
    X.Z. Wu, S.F. Wang, R.P. Liu, Acta Mech. Sin. 26, 425 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    J.W. Christian, V. Vitek, Rep. Prog. Phys. 33, 307 (1970)ADSCrossRefGoogle Scholar
  35. 35.
    A.J. Foreman, M.A. Jaswon, J.K. Wood, Proc. Phys. Soc. A 64, 156 (1951)ADSCrossRefGoogle Scholar
  36. 36.
    C.W. Zhao, Y.M. Xing, P.C. Bai, Chinese Phys. B 18, 2464 (2009) ADSCrossRefGoogle Scholar
  37. 37.
    Y.X. Gan, B.Z. Jang, J. Mater. Sci. Lett. 15, 2044 (1996) Google Scholar
  38. 38.
    X.Z. Wu, S.F. Wang, R.P. Liu, Chinese Phys. B 18, 2905 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edn. (Wiley, New York, 1982)Google Scholar
  40. 40.
    X.Z. Wu et al., Cent. Eur. J. Phys. 9, 1095 (2011)CrossRefGoogle Scholar
  41. 41.
    S. Takeuchi, H. Koizumi, T. Suzuki, Mater. Sci. Eng. A 521, 90 (2009)CrossRefGoogle Scholar
  42. 42.
    J.N. Wang, Mater. Sci. Eng. A 206, 259 (1996) CrossRefGoogle Scholar
  43. 43.
    W.G. Johnston, J.J. Gilman, Solid State Phys. 13, 147 (1962)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • L. Liu
    • 1
  • X. Z. Wu
    • 1
    Email author
  • R. Wang
    • 1
  • H. F. Feng
    • 1
  • S. Wu
    • 1
  1. 1.Institute for Structure and FunctionChongqing UniversityChongqingP.R. China

Personalised recommendations