The European Physical Journal B

, Volume 83, Issue 4, pp 429–435 | Cite as

Heating liquid dielectrics by time dependent fields

  • A. Khalife
  • U. Pathak
  • R. RichertEmail author
Regular Article Solid State and Materials


Steady state and time-resolved dielectric relaxation experiments are performed at high fields on viscous glycerol and the effects of energy absorption from the electric field are studied. Time resolution is obtained by a sinusoidal field whose amplitude is switched from a low to a high level and by recording voltage and current traces with an oscilloscope during this transition. Based on their distinct time and frequency dependences, three sources of modifying the dynamics and dielectric loss via an increase in the effective temperature can be distinguished: electrode temperature, real sample temperature, and configurational temperatures of the modes that absorbed the energy. Isothermal conditions that are desired for focusing on the configurational temperature changes (as in dielectric hole burning and related techniques) are maintained only for very thin samples and for moderate power levels. For high frequencies, say ν > 1 MHz, changes of the real temperature will exceed the effects of configurational temperatures in the case of macroscopic samples. Regarding microwave chemistry, heating via cell phone use, and related situations in which materials are subject to fields involving frequencies beyond the MHz regime, we conclude that changes in the configurational (or fictive) temperatures remain negligible compared with the increase of the real temperature. This simplifies the assessment of how time dependent electric fields modify the properties of materials.


Dielectric Loss Propylene Glycol Electrode Distance Electrode Temperature Enthalpy Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Schiener, R. Böhmer, A. Loidl, R.V. Chamberlin, Science 274, 752 (1996) ADSCrossRefGoogle Scholar
  2. 2.
    R. Richert, S. Weinstein, Phys. Rev. Lett. 97, 095703 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    J. Malecki, J. Mol. Struct. 436-437, 595 (1997) ADSCrossRefGoogle Scholar
  4. 4.
    C. Brun, C. Crauste-Thibierge, F. Ladieu, D. L’Hôte, J. Chem. Phys. 134, 194507 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    A. Piekara, A. Chelkowski, J. Chem. Phys. 25, 794 (1956)ADSCrossRefGoogle Scholar
  6. 6.
    B. Schiener, R.V. Chamberlin, G. Diezemann, R. Böhmer, J. Chem. Phys. 107, 7746 (1997) ADSCrossRefGoogle Scholar
  7. 7.
    H. Fröhlich, Theory of Dielectrics (Clarendon, Oxford, 1958)Google Scholar
  8. 8.
    S.A. Galema, Chem. Soc. Rev. 26, 233 (1997)CrossRefGoogle Scholar
  9. 9.
    D. Dallinger, C.O. Kappe, Chem. Rev. 107, 2563 (2007) CrossRefGoogle Scholar
  10. 10.
    C. Gabriel, S. Gabriel, E.H. Grant, B.S.J. Halstead, D.M.P. Mingos, Chem. Soc. Rev. 27, 213 (1998)CrossRefGoogle Scholar
  11. 11.
    K.R. Jeffrey, R. Richert, K. Duvvuri, J. Chem. Phys. 119, 6150 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    T. Blochowicz, E.A. Rössler, J. Chem. Phys. 122, 224511 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    K. Duvvuri, R. Richert, J. Chem. Phys. 118, 1356 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996) CrossRefGoogle Scholar
  15. 15.
    C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    R. Richert, J. Phys.: Condens. Matter 14, R703 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    S. Weinstein, R. Richert, Phys. Rev. B 75, 064302 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    L.-M. Wang, R. Richert, Phys. Rev. Lett. 99, 185701 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    B. Roling, J. Chem. Phys. 117, 1320 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    R. Richert, R. Böhmer, Phys. Rev. Lett. 83, 4337 (1999) ADSCrossRefGoogle Scholar
  22. 22.
    C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J.-P. Bouchaud, Phys. Rev. Lett. 104, 165703 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    W. Huang, R. Richert, J. Phys. Chem. B 112, 9909 (2008) CrossRefGoogle Scholar
  24. 24.
    W. Huang, R. Richert, J. Chem. Phys. 130, 194509 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    R. Richert, J. Chem. Phys. 133, 074502 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    Analog Devices, Datasheet for AD549, rev. F (2006), p. 13Google Scholar
  27. 27.
    W. Kauzmann, Chem. Rev. 43, 219 (1948)CrossRefGoogle Scholar
  28. 28.
    A.A. Minakov, S.A. Adamovsky, C. Schick, Thermochim. Acta 403, 89 (2003)CrossRefGoogle Scholar
  29. 29.
    M. Kundi, Environ. Health Persp. 117, 316 (2009) Google Scholar
  30. 30.
    P.W. French, R. Penny, J.A. Laurence, D.R. McKenzie, Differentiation 67, 93 (2000)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA

Personalised recommendations