The European Physical Journal B

, Volume 84, Issue 2, pp 241–247 | Cite as

Linear and nonlinear optical absorption coefficients in inverse parabolic quantum wells under static external electric field

Regular Article Mesoscopic and Nanoscale Systems

Abstract

In the present theoretical study, the linear and third-order nonlinear optical absorption coefficients have been calculated in GaAs/Ga1−xAlxAs inverse parabolic quantum wells (single and double) subjected to an external electric field. Our calculations are based on the potential morphing method in the effective mass approximation. The systematic theoretical investigation contains results with all possible combinations of the involved parameters, as quantum well width, quantum barrier width, Al concentration at each well center and magnitude of the external electric field. Our results indicate that in most cases investigated, the increase of the electric field blue-shifts the peak positions of the total absorption coefficient. In all cases studied it became apparent that the incident optical intensity considerably affects the total absorption coefficient.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.D. Yoffe, Adv. Phys. 42, 173 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Les Ulis, 1988)Google Scholar
  3. 3.
    P. Harrison, Quantum Wells, Wires and Dots (Wiley, NY, 2006)Google Scholar
  4. 4.
    L.L. Chang, L. Esaki, R. Tsu, Appl. Phys. Lett. 24, 593 (1974)ADSCrossRefGoogle Scholar
  5. 5.
    R. Dingle, A.C. Gossard, W. Wiegmann, Phys. Rev. Lett. 33, 827 (1974)ADSCrossRefGoogle Scholar
  6. 6.
    C. Mailhiot, Yia-Chung Chang, T.C. McGill, Phys. Rev. B 26, 4449 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    R.C. Miller, A.C. Gossard, O.A. Kleinman, O. Munteanu, Phys. Rev. B 29, 3740 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    Q. Guo, Y.P. Feng, H.C. Poon, C.K. Ong, Eur. Phys. J. B 9, 29 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    F.Q. Zhao, X.X. Liang, S.L. Ban, Eur. Phys. J. B 33, 3 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Z.P. Wang, X.X. Liang, X. Wang, Eur. Phys. J. B 59, 41 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Y.-B. Yu, S.-N. Zhu, K.-X. Guo, Phys. Lett. A 335, 175 (2005)MATHADSCrossRefGoogle Scholar
  12. 12.
    E. Kasapoglu, H. Sari, I. Sökmen, Surf. Rev. Lett. 13, 397 (2006)CrossRefGoogle Scholar
  13. 13.
    E. Kasapoglu, I. Sökmen, Physica E 27, 198 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    K.K. Law, R.H. Yan, A.C. Gossard, J.L. Merz, J. Appl. Phys. 67, 6461 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    W.Q. Chen, S.M. Wang, T.G. Andersson, J.T. Thordson, Phys. Rev. B 48, 14264 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    W.Q. Chen, S.M. Wang, T.G. Andersson, J.T. Thordson, J. Appl. Phys. 74, 6247 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    S. Vlaev, V.R. Velasco, F. Garcia-Moliner, Phys. Rev. B 51, 7321 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    E. Kasapoglu, H. Sari, I. Sökmen, Physica B 390, 216 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    S. Baskoutas, A.F. Terzis, Physica E 40, 1367 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    S. Elagoz, P. Baser, U. Yahsi, Physica B 403, 3879 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    E. Kasapoglu, I. Sökmen, Phys. Lett. A 37, 56 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    S. Baskoutas, A.F Terzis, Eur. Phys. J. B 69, 237 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    S. Baskoutas, A.F Terzis, J. Comp. Theor. Nanosci. 7, 492 (2010)CrossRefGoogle Scholar
  24. 24.
    E. Kasapoglu, Physica E 41, 1222 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    E.M. Goldys, J.J. Shi, Phys. Status Solidi B 210, 237 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    I. Karabulut, U. Atav, H. Safak, M. Tomak, Eur. Phys. J. B 55, 283 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    D. Ahn, S.L. Chuang, IEEE J. Quantum Electron. 23, 2196 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    R.F. Kazarinov, R.A. Suris, Sov. Phys. Semicond. 5, 707 (1971)Google Scholar
  29. 29.
    D.A.B. Miller, Int. J. High Speed Electron. Syst. 1, 19 (1991)CrossRefGoogle Scholar
  30. 30.
    T.H. Hood, J. Lightwave Technol. 6, 743 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    I. Moreels, P. Kockaert, R. Van Deun, K. Driesenc, J. Loicq, D. Van Thourhoute, Z. Hens, J. Lumin. 121, 369 (2006)CrossRefGoogle Scholar
  32. 32.
    H. Yıldırım, M. Tomak, J. Appl. Phys. 99, 093103 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    M. Rieth, W. Schommers, S. Baskoutas, Int. J. Mod. Phys. B 16, 4081 (2002)MATHADSCrossRefGoogle Scholar
  34. 34.
    S. Baskoutas, A.F. Terzis, E. Voutsinas, J. Comp. Theor. Nanosci. 1, 315 (2004)CrossRefGoogle Scholar
  35. 35.
    P.A. Ling, Trends in Quantum Dot Research (Nova Science Publishers, New York, 2005), pp. 93–124Google Scholar
  36. 36.
    S. Baskoutas, A.F. Terzis, J. Appl. Phys. 98, 044309 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    S. Baskoutas, A.F. Terzis, J. Appl. Phys. 99, 013708 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    S. Baskoutas, Chem. Phys. Lett. 404, 107 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    S. Baskoutas, E. Paspalakis, A.F. Terzis, Phys. Rev. B 74, 153306 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    S. Baskoutas, E. Paspalakis, A.F. Terzis, J. Phys.: Condens. Matter 19, 395024 (2007)CrossRefGoogle Scholar
  41. 41.
    S. Adachi, J. Appl. Phys. 58, R1 (1985)ADSCrossRefGoogle Scholar
  42. 42.
    I. Karabulut, S. Baskoutas, J. Appl. Phys. 103, 073512 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Materials Science, School of Natural SciencesUniversity of PatrasRionGreece
  2. 2.Department of Physics, School of Natural SciencesUniversity of PatrasRionGreece
  3. 3.Department of Environment Technology & EcologyTechnological Institute of Ionian IslandsZakynthosGreece

Personalised recommendations