The European Physical Journal B

, Volume 84, Issue 3, pp 419–424 | Cite as

Electronic and magnetic properties of SiC nanoribbons by F termination

  • D. B. Lu
  • Y. L. Song
  • Z. X. Yang
  • H. R. Xu
  • C. Wang
  • Z. H. Gao
Regular Article Mesoscopic and Nanoscale Systems

Abstract

By using the first-principles calculations, the electronic properties are studied for the F-terminated SiC nanoribbons (SiCNRs) with either zigzag edges (ZSiCNRs) or armchair edges (ASiCNRs). The results show that the broader F-terminated ZSiCNRs are metallic and the edge states appear at the Fermi level, while the F-terminated ASiCNRs are always semiconductors independent of their width but the edge states do not appear due to the Si-C dimer bonds at the edges. The charge density contours analyses shows that the Si-F and Si-C bonds are all ionic bonds due to the much stronger electronegativities of the F and C atoms than that of the Si atom. However, the C-F bonds display a typical non-polar covalent bonding feature because of the electronegativity difference between the F and C atoms of 1.5 is a much smaller than that of between the F and Si atoms of 2.2, as well as the tighter bounded C 2s22p2 electrons with smaller orbital radius than the Si 3s23p2 electrons. For both the F- and the H-terminated ZSiCNRs, the ground state is a ferromagnetic semiconductor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.M. Choi, S.H. Jhi, Phys. Rev. Lett. 101, 266105 (2008) CrossRefADSGoogle Scholar
  2. 2.
    J. Jiang, W. Lu, J. Bernholc, Phys. Rev. Lett. 101, 246803 (2008) CrossRefADSGoogle Scholar
  3. 3.
    D.A. Abanin, P.A. Lee, L.S. Levitov, Phys. Rev. Lett. 96, 176803 (2006) CrossRefADSGoogle Scholar
  4. 4.
    Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006) CrossRefADSGoogle Scholar
  5. 5.
    K.I. Sasaki, S. Murakami, R. Saito, J. Phys. Soc. Jpn 75, 074713 (2006) CrossRefADSGoogle Scholar
  6. 6.
    K. Nakada, M. Fujita, Phys. Rev. B 54, 17954 (1996) CrossRefADSGoogle Scholar
  7. 7.
    T. Kawai et al., Phys. Rev. B 62, R16349 (2000) CrossRefADSGoogle Scholar
  8. 8.
    Y. Miyamoto, K. Nakada, M. Fujita, Phys. Rev. B 59, 9858 (1999) CrossRefADSGoogle Scholar
  9. 9.
    S. Cahangirov et al., Phys. Rev. Lett. 102, 236804 (2009) CrossRefADSGoogle Scholar
  10. 10.
    M. Ezawa, Phys. Rev. B 73, 045432 (2006) CrossRefADSGoogle Scholar
  11. 11.
    G.L. Harris, Properties of Silicon Carbide (INSPEC, London, 1995)Google Scholar
  12. 12.
    Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006) CrossRefADSGoogle Scholar
  13. 13.
    J.M. Zhang, F.L. Zheng, Y. Zhang, V. Ji, J. Mater. Sci. 45, 3259 (2010) CrossRefADSGoogle Scholar
  14. 14.
    H. Motoyama, K. Takeda, K. Shiraishi, Proceedings of Materials Research Society Symposium (1998), Vol. 486, p. 385Google Scholar
  15. 15.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)CrossRefADSGoogle Scholar
  16. 16.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994) CrossRefADSGoogle Scholar
  17. 17.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  18. 18.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) CrossRefADSGoogle Scholar
  19. 19.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) CrossRefADSGoogle Scholar
  20. 20.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  21. 21.
    S.Y. You, Y. Wang, Chinese J. Semiconductors 27, 1927 (2006) (in Chinese)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • D. B. Lu
    • 1
  • Y. L. Song
    • 1
  • Z. X. Yang
    • 2
  • H. R. Xu
    • 1
  • C. Wang
    • 1
  • Z. H. Gao
    • 1
  1. 1.College of Physics and Electronic EngineeringNanyang Normal UniversityNanyangP.R. China
  2. 2.College of Physics and Information EngineeringHenan Normal UniversityHenanP.R. China

Personalised recommendations