The European Physical Journal B

, Volume 84, Issue 3, pp 357–364 | Cite as

Theoretical study on the electronic and magnetic properties of double perovskite La2−xSrxMnCoO6 (x = 0,1,2)

  • X. LanEmail author
  • S. Kong
  • W. Y. Zhang
Regular Article Solid State and Materials


In this paper, the electronic and magnetic properties of double perovskite La2−x Sr x MnCoO6 (x = 0,1,2) have been studied using the local-spin-density approximation + U method. For the three compositions investigated, the low symmetry P21/n structure yields consistently lower energy than that of the high symmetry \hbox{$Fm\bar{3}m$} Fmm structure. The strong electronic correlation and the orbital polarization of Co-d electrons play crucial roles. In agreement with experiments, we find that La2MnCoO6 is a ferromagnetic insulator with both Mn and Co ions in their high-spin states. The tilting of oxygen octahedrons is most significant in this case and is responsible for its insulating behavior; for LaSrMnCoO6, the ground state remains a ferromagnetic insulator with Mn and Co ions in their high-spin states. The optimized P21/n and \hbox{$Fm\bar{3}m$}Fmm crystal structures are nearly the same, and the P21/n structure is stabilized by the spontaneous layer-wise antiferro-orbital ordering of Co-d electrons. We also predict that Sr2MnCoO6 is a ferromagnetic metal, and its electronic structure can be viewed as a rigid band shifting from that of LaSrMnCoO6. Due to the strong covalency between transition metal and oxygen ions, the valences of Mn and Co ions differ considerably from those derived from purely ionic model. Also, doping induced holes mainly go to oxygen sites though the density of states near the Fermi energy has strong mixed character. This feature, together with the orbital ordering phenomenon, should be observable via the X-ray near-edge absorption spectroscopy and the polarized X-ray diffraction spectra.


Perovskite Double Perovskite Strong Electronic Correlation Oxygen Octahedron Saturation Magnetic Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71, 2331 (1993) CrossRefADSGoogle Scholar
  2. 2.
    S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264, 413 (1994) CrossRefADSGoogle Scholar
  3. 3.
    A. Asamitsu, Y. Moritomo, Y. Tomioka, T. Arima, Y. Tokura, Nature 373, 407 (1995) CrossRefADSGoogle Scholar
  4. 4.
    I. Solovyev, N. Hamada, K. Terakura, Phys. Rev. Lett. 76, 4825 (1996) CrossRefADSGoogle Scholar
  5. 5.
    J.B. Goodenough, Phys. Rev. 100, 564 (1955) CrossRefADSGoogle Scholar
  6. 6.
    J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959)CrossRefADSGoogle Scholar
  7. 7.
    C. Zener, Phys. Rev. 81, 440 (1951)CrossRefzbMATHADSGoogle Scholar
  8. 8.
    P.G. de Gennes, Phys. Rev. 118, 141 (1960) CrossRefADSGoogle Scholar
  9. 9.
    A.J. Millis, P.B. Littlewood, B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995) CrossRefADSGoogle Scholar
  10. 10.
    G. Zhao, K. Conder, H. Keller, K.A. Müller, Nature 381, 676 (1996) CrossRefADSGoogle Scholar
  11. 11.
    G. Briceño, H. Chang, X. Sun, P.G. Schultz, X.D. Xiang, Science 270, 273 (1995) CrossRefADSGoogle Scholar
  12. 12.
    R. Mahendiran, A.K. Paychaudhuri, A. Chainani, D.D. Sarma, J. Phys.: Condens. Matter 7, L561 (1995)CrossRefADSGoogle Scholar
  13. 13.
    M.A. Senaris-Rodriguez, J.B. Goodenough, J. Solid State Chem. 116, 224 (1995) CrossRefADSGoogle Scholar
  14. 14.
    S. Yamaguchi, Y. Okimoto, H. Taniguchi, Y. Tokura, Phys. Rev. B 53, R2926 (1996) CrossRefADSGoogle Scholar
  15. 15.
    M.A. Korotin, S. Yu. Ezhov, I.V. Solovyev, V.I. Anisimov, D.I. Khomskii, G.A. Sawatzky, Phys. Rev. B 54, 5309 (1996) CrossRefADSGoogle Scholar
  16. 16.
    T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, M. Takano, Phys. Rev. B 55, 4257 (1997) CrossRefADSGoogle Scholar
  17. 17.
    A. Chainani, M. Mathew, D.D. Sarma, Phys. Rev. B 46, 9976 (1992) CrossRefADSGoogle Scholar
  18. 18.
    M. Zhuang, W.Y. Zhang, T. Zhou, N. Ming, Phys. Lett. A 255, 354 (1999) CrossRefADSGoogle Scholar
  19. 19.
    P.A. Joy, Y.B. Khollam, S.K. Date, Phys. Rev. B 62, 8608 (2000) CrossRefADSGoogle Scholar
  20. 20.
    V.L.J. Joly, P.A. Joy, S.K. Date, C.S. Gopinath, J. Phys.: Condens. Matter 13, 649 (2001)CrossRefADSGoogle Scholar
  21. 21.
    R.I. Dass, J.B. Goodenough, Phys. Rev. B 67, 014401 (2003) CrossRefADSGoogle Scholar
  22. 22.
    C.L. Bull, D. Gleeson, K.S. Knight, J. Phys.: Condens. Matter 15, 4927 (2003) CrossRefADSGoogle Scholar
  23. 23.
    T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Phys. Rev. B 67, 180401 (2003) CrossRefADSGoogle Scholar
  24. 24.
    N.S. Rogado, J. Li, A.W. Sleight, M.A. Subramanian, Adv. Mater. 17, 2225 (2005) CrossRefGoogle Scholar
  25. 25.
    M.P. Singh, K.D. Truong, P. Fournier, Appl. Phys. Lett. 91, 042504 (2007) CrossRefADSGoogle Scholar
  26. 26.
    B.T. Matthias, R.M. Bozorth, J.H. Van Vleck, Phys. Rev. Lett. 7, 160 (1961)CrossRefADSGoogle Scholar
  27. 27.
    P.K. Baltzer, H.W. Lehmann, M. Robbins, Phys. Rev. Lett. 15, 493 (1965)CrossRefADSGoogle Scholar
  28. 28.
    M.A. Subramanian, A.P. Ramirez, W.J. Marshall, Phys. Rev. Lett. 82, 1558 (1999) CrossRefADSGoogle Scholar
  29. 29.
    T. Burnus,Z. Hu,H.H. Hsieh,V.L.J. Joly, P.A. Joy,M.W. Haverkort,Hua Wu, A. Tanaka, H.-J. Lin, C.T. Chen, L.H. Tjeng, Phys. Rev. B 77, 125124 (2008) CrossRefADSGoogle Scholar
  30. 30.
    J. Androulakis, N. Katsarakis, J. Giapintzakis, N. Vouroutzis, E. Pavlidou, K. Chrissafis, E.K. Polychroniadis, V. Perdikatsis, J. Solid. State. Chem. 173, 350 (2003) CrossRefADSGoogle Scholar
  31. 31.
    Zhongqin Yang,Ling Ye,Xide Xie, Phys. Rev. B 59, 7051 (1999)CrossRefGoogle Scholar
  32. 32.
    P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2K package,
  33. 33.
    Hua Wu, T. Burnus, Phys. Rev. B 80, R081105 (2009) CrossRefADSGoogle Scholar
  34. 34.
    Hua Wu, Phys. Rev. B 81, 115127 (2009)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.National Laboratory of Solid State Microstructures and Department of PhysicsNanjing UniversityNanjingP.R. China
  2. 2.Department of PhysicsNanjing University of Aeronautics and AstronauticsNanjingP.R. China

Personalised recommendations