The accelerating growth of online tagging systems

  • L. F. WuEmail author
Regular Article Interdisciplinary Physics


Research on the growth of online tagging systems not only is interesting in its own right, but also yields insights for website management and semantic web analysis. Traditional models that describing the growth of online systems can be divided between linear and nonlinear versions. Linear models, including the BA model [A.L. Barabasi, R. Albert, Science 286, 509 (1999)], assume that the average activity of users is a constant independent of population. Hence the total activity is a linear function of population. On the contrary, nonlinear models suggest that the average activity is affected by the size of the population and the total activity is a nonlinear function of population. In the current study, supporting evidences for the nonlinear growth assumption are obtained from data on Internet users' tagging behavior. A power law relationship between the number of new tags (F) and the population (P), which can be expressed as F~P γ (γ > 1), is found. I call this pattern accelerating growth and find it relates the to time-invariant heterogeneity in individual activities. I also show how a greater heterogeneity leads to a faster growth.


Individual Activity Daily Distribution Accelerate Growth Rate Minimize Transportation Cost Online Social System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.L. Barabasi, R. Albert, Science 286, 509 (1999) MathSciNetCrossRefGoogle Scholar
  2. 2.
    J.S. Mattick, M.J. Gagen, Science 307, 856 (2005) CrossRefGoogle Scholar
  3. 3.
    T. Henderson, S. Bhatti, Proc. the 9th ACM International Conference on Multimedia (Ottawa, 2001), Vol. 1, p. 212 Google Scholar
  4. 4.
    F. Wu, D.M. Wilkinson, B.A. Huberman, Proc. the 11th IEEE International Conference on Computational Science and Engineering (Vancouver, 2009), Vol. 4, p. 409 Google Scholar
  5. 5.
    F. Schweitzer, C.J. Tessone, M.M. Geipel, CCSS Working Paper No. 10-008 (2010) Google Scholar
  6. 6.
    C. Cattuto, A. Barrat, A. Baldassarri, G. Schehr, V. Loreto, PNAS 106, 10511 (2009) Google Scholar
  7. 7.
    L. Bettencourt, J. Lobo, D. Helbing, C. Kuhnert, G.B. West, PNAS 104, 7301 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    J. Zhang, T. Yu, Physica A 389, 4887 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    P.L. Krapivsky, S. Redner, Phys. Rev. E 71, 36118 (2005) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    B.F. de Blasio, A. Svensson, F. Liljeros, PNAS 104, 10762 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    M.A. Serrano, M. Boguna, A. Diaz-Guilera, Phys. Rev. Lett. 94, 038701 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    D.M.D. Smith, J.-P. Onnela, N.F. Johnson, New J. Phys. 9, 181 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    O. Gorlitz, S. Sizov, S. Staab, Proc. the 7th international conference on Peer-to-peer systems (Tampa Bay, 2008), Vol. 1, p. 19 Google Scholar
  14. 14.
    M. Rodriguez, E. Langre, B. Moulia, Am. J. Bot. 95, 1523 (2008) CrossRefGoogle Scholar
  15. 15.
    S. Nordbeck, Geogr. Ann. B 53, 54 (1971) CrossRefGoogle Scholar
  16. 16.
    L. Lu, Z.K. Zhang, T. Zhou, PLoS One 5, e14139 (2010) Google Scholar
  17. 17.
    G.B. West, J.H. Brown, B.J. Enquist, Science 276, 122 (1997) CrossRefGoogle Scholar
  18. 18.
    J.R. Banavar, A. Maritan, A. Rinaldo, Nature 399, 130 (1999) ADSCrossRefGoogle Scholar
  19. 19.
    S. Miyazima, Y. Lee, T. Nagamine, H. Miyajima, Physica A 278, 282 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    M.E.J. Newman, Contemp. Phys. 46, 323 (2005) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Dept. of Media and CommunicationCity University of Hong KongHong KongP.R. China

Personalised recommendations