Advertisement

The European Physical Journal B

, Volume 82, Issue 1, pp 7–12 | Cite as

Electric field-induced rearrangement of charged species in metal oxide devices with resistive change: thermodynamic limitations

  • I. KiselevEmail author
  • M. Sommer
  • V. V. Sysoev
Solid State and Materials Regular Article

Abstract

Hypotheses used to interpret results of electrical measurements on metal oxides which are employed for gas sensors and resistive switching memristors are often based on consideration of drift migration of species (such as oxygen vacancies, chemisorbed ions) under electric field. We offer simple conceptual arguments restricting this approach from the view points of potential minimum principle, ambipolar diffusion and non-equilibrium thermodynamics (Glansdorff-Prigogine criterion).

Keywords

Oxygen Vacancy Entropy Production Resistive Switching Metal Oxide Charged Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Waser, M. Aono, Nature Mater. 6, 833 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    T. Sauerwald, D. Skiera, D. Kohl, Appl. Phys. A 87, 525 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    N.A. Tulina, S.A. Zver’kov, Y.M. Mukovskii, D.A. Shulyatev, Europhys. Lett. 56, 836 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    M.J. Rozenberg, M.J. Sánchez, R. Weht, C. Acha, F. Gomez-Marlasca, P. Levy, Phys. Rev. 81, 115101 (2010) CrossRefGoogle Scholar
  6. 6.
    Y.B. Nian, J. Strozier, N.J. Wu, X. Chen, A. Ignatiev, Phys. Rev. Lett. 90, 022907 (2007) Google Scholar
  7. 7.
    K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nature Mater. 5, 312 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    A. Baikalov, Y.Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y.Y. Sun, Y.Y. Xue, C.W. Chu, Appl. Phys. Lett. 83, 957 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    D.B. Strukov, J.L. Borghetti, R.S. Williams, Small 5, 1058 (2009) CrossRefGoogle Scholar
  10. 10.
    Y. Xia, W. He, L. Chen, X. Meng, Z. Liu, Appl. Phys. Lett. 90, 022907 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    X. Chen, N.J. Wu, J. Strozier, A. Ignatiev, Appl. Phys. Lett. 87, 233506 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    S. Tsui, A. Baikalov, J. Cmaidalka, Y.Y. Sun, Y.Q. Wang, Y.Y. Xue, C.W. Chu, L. Chen, A.J. Jacobson, Appl. Phys. Lett. 85, 317 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    M. Liess, Thin Solid Films 410, 183 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    O.K. Varghese, L.K. Malhotra, Sens. Actuators B 53, 19 (1998) CrossRefGoogle Scholar
  15. 15.
    O.K. Varghese, L.K. Malhotra, J. Appl. Phys. 87, 7457 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Min, H.L. Tuller, S. Palzer, J. Wöllenstein, H. Böttner, Sens. Actuators B 93, 435 (2003) CrossRefGoogle Scholar
  17. 17.
    V. Simakov, O. Yakusheva, A. Grebennikov, V. Kisin, Sens. Actuators B 116, 221 (2006) CrossRefGoogle Scholar
  18. 18.
    A. Šetkus, V. Bukauskas, A. Mironas, D. Senuliene, V. Strazdiene, Phys. Status Solidi C 6, 2753 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    I. Kiselev, M. Sommer, Thin Solid Films 518, 4533 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    J.A. Bittencourt, Fundamentals of plasma physics (Springer, New York, 2004) Google Scholar
  21. 21.
    P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, London, 1971) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyInstitute of Microstructure Technology, IMTEggenstein-LeopoldshafenGermany
  2. 2.Physics DepartmentSaratov State Technical UniversitySaratovRussia

Personalised recommendations