The European Physical Journal B

, Volume 81, Issue 2, pp 245–251 | Cite as

Wang-Landau study of the 3D Ising model with bond disorder

Regular Article

Abstract

We implement a two-stage approach of the Wang-Landau algorithm to investigate the critical properties of the 3D Ising model with quenched bond randomness. In particular, we consider the case where disorder couples to the nearest-neighbor ferromagnetic interaction, in terms of a bimodal distribution of strong versus weak bonds. Our simulations are carried out for large ensembles of disorder realizations and lattices with linear sizes L in the range \(L=8{-}64\). We apply well-established finite-size scaling techniques and concepts from the scaling theory of disordered systems to describe the nature of the phase transition of the disordered model, departing gradually from the fixed point of the pure system. Our analysis (based on the determination of the critical exponents) shows that the 3D random-bond Ising model belongs to the same universality class with the site- and bond-dilution models, providing a single universality class for the 3D Ising model with these three types of quenched uncorrelated disorder.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spin glasses and random fields, edited by A.P. Young (World Scientific, Singapore, 1998) Google Scholar
  2. 2.
    M. Aizenman, J. Wehr, Phys. Rev. Lett. 62, 2503 (1989) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    M. Aizenman, J. Wehr, Phys. Rev. Lett. 64, 1311(E) (1990) Google Scholar
  4. 4.
    K. Hui, A.N. Berker, Phys. Rev. Lett. 62, 2507 (1989) ADSCrossRefGoogle Scholar
  5. 5.
    K. Hui, A.N. Berker, Phys. Rev. Lett. 63, 2433(E) (1989) Google Scholar
  6. 6.
    S. Chen, A.M. Ferrenberg, D.P. Landau, Phys. Rev. Lett. 69, 1213 (1992) ADSCrossRefGoogle Scholar
  7. 7.
    J. Cardy, J.L. Jacobsen, Phys. Rev. Lett. 79, 4063 (1997) MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    C. Chatelain, B. Berche, Phys. Rev. Lett. 80, 1670 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    A.B. Harris, J. Phys. C 7, 1671 (1974) ADSCrossRefGoogle Scholar
  10. 10.
    J.T. Chayes, L. Chayes, D.S. Fisher, T. Spencer, Phys. Rev. Lett. 57, 2999 (1986) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    V. Dotsenko, M. Picco, P. Pujol, Nucl. Phys. B 455, 701 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    J.L. Jacobsen, J. Cardy, Nucl. Phys. B 515, 701 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    G. Mazzeo, R. Kühn, Phys. Rev. E 60, 3823 (1999) ADSCrossRefGoogle Scholar
  14. 14.
    A. Gordillo-Guerrero, R. Kenna, J.J.R. Lorenzo, AIP Conf. Proc. 1198, 42 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    D.P. Landau, Phys. Rev. B 22, 2450 (1980) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    D. Chowdhury, D. Stauffer, J. Stat. Phys. 44, 203 (1986) ADSCrossRefGoogle Scholar
  17. 17.
    H.-O. Heuer, Europhys. Lett. 12, 551 (1990) ADSCrossRefGoogle Scholar
  18. 18.
    H.-O. Heuer, Phys. Rev. B 42, 6476 (1990) ADSCrossRefGoogle Scholar
  19. 19.
    H.-O. Heuer, J. Phys. A 26, L333 (1993) ADSCrossRefGoogle Scholar
  20. 20.
    M. Hennecke, Phys. Rev. B 48, 6271 (1993) ADSCrossRefGoogle Scholar
  21. 21.
    H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J.J. Ruiz-Lorenzo, Phys. Rev. B 58, 2740 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    S. Wiseman, E. Domany, Phys. Rev. Lett. 81, 22 (1998) ADSCrossRefGoogle Scholar
  23. 23.
    P. Calabrese, V. Martín-Mayor, A. Pelissetto, E. Vicari, Phys. Rev. E 68, 036136 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    M. Hasenbusch, F. Parisen Toldin, A. Pelissetto, E. Vicari, J. Stat. Mech. P02016 (2007) Google Scholar
  25. 25.
    P.E. Berche, C. Chatelain, B. Berche, W. Janke, Eur. Phys. J. B 38, 463 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    R. Folk, Y. Holovatch, T. Yavorskii, Phys. Rev. B 61, 15114 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    D.V. Pakhnin, A.I. Sokolov, Phys. Rev. B 61, 15130 (2000) ADSCrossRefGoogle Scholar
  28. 28.
    A. Pelissetto, E. Vicari, Phys. Rev. B 62, 6393 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    K.E. Newman, E.K. Riedel, Phys. Rev. B 25, 264 (1982) ADSCrossRefGoogle Scholar
  30. 30.
    G. Jug, Phys. Rev. B 27, 609 (1983) ADSCrossRefGoogle Scholar
  31. 31.
    I.O. Mayer, J. Phys. A 22, 2815 (1989) ADSCrossRefGoogle Scholar
  32. 32.
    R. Guida, J. Zinn-Justin, J. Phys. A 31, 8103 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    A.K. Murtazaev, A.B. Babaev, J. Magn. Magn. Mater. 321, 2630 (2009) ADSCrossRefGoogle Scholar
  34. 34.
    N.G. Fytas, P.E. Theodorakis, Phys. Rev. E 82, 062101 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    M.E.J. Newman, G.T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon Press, Oxford, 1999) Google Scholar
  36. 36.
    F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001) ADSCrossRefGoogle Scholar
  37. 37.
    F. Wang, D.P. Landau, Phys. Rev. E 64, 056101 (2001) ADSCrossRefGoogle Scholar
  38. 38.
    A. Malakis, A. Peratzakis, N.G. Fytas, Phys. Rev. E 70, 066128 (2004) ADSCrossRefGoogle Scholar
  39. 39.
    A. Malakis, S.S. Martinos, I.A. Hadjiagapiou, N.G. Fytas, P. Kalozoumis, Phys. Rev. E 72, 066120 (2005) ADSCrossRefGoogle Scholar
  40. 40.
    A. Malakis, N.G. Fytas, Phys. Rev. E 73, 016109 (2006) ADSCrossRefGoogle Scholar
  41. 41.
    N.G. Fytas, A. Malakis, K. Eftaxias, J. Stat. Mech. P03015 (2008) Google Scholar
  42. 42.
    N.G. Fytas, A. Malakis, I.A. Hadjiagapiou, J. Stat. Mech. P11009 (2008) Google Scholar
  43. 43.
    A. Malakis, A.N. Berker, I.A. Hadjiagapiou, N.G. Fytas, T. Papakonstantinou, Phys. Rev. E 81, 041113 (2010) ADSCrossRefGoogle Scholar
  44. 44.
    N.G. Fytas, A. Malakis, Phys. Rev. E 81, 041109 (2010) ADSCrossRefGoogle Scholar
  45. 45.
    R.E. Belardinelli, V.D. Pereyra, Phys. Rev. E 75, 046701 (2007) ADSCrossRefGoogle Scholar
  46. 46.
    A. Aharony, A.B. Harris, Phys. Rev. Lett. 77, 3700 (1996) ADSCrossRefGoogle Scholar
  47. 47.
    K. Bernardet, F. Pázmándi, G.G. Batrouni, Phys. Rev. Lett. 84, 4477 (2000) ADSCrossRefGoogle Scholar
  48. 48.
    A.M. Ferrenberg, D.P. Landau, Phys. Rev. B 44, 5081 (1991) ADSCrossRefGoogle Scholar
  49. 49.
    R.L.C. Vink, T. Fischer, K. Binder, Phys. Rev. E 82, 051134 (2010) ADSCrossRefGoogle Scholar
  50. 50.
    N. Sourlas, Comput. Phys. Commun. 121, 183 (1999) ADSCrossRefGoogle Scholar
  51. 51.
    N.G. Fytas, A. Malakis, Eur. Phys. J. B 79, 13 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria
  2. 2.Institute for Theoretical Physics and Center for Computational Materials ScienceVienna University of TechnologyViennaAustria
  3. 3.Vienna Computational Materials LaboratoryViennaAustria
  4. 4.Department of Materials ScienceUniversity of PatrasPatrasGreece

Personalised recommendations