Advertisement

The European Physical Journal B

, Volume 80, Issue 4, pp 485–492 | Cite as

The geometric mean density of states and its application to one-dimensional nonuniform systems

  • L. Zhang
  • L. Y. Gong
  • P. Q. TongEmail author
Article

Abstract.

By using the measure of the ratio R of the geometric mean of the local density of states (LDOS) and the arithmetic mean of LDOS, the localization properties can be efficiently characterized in one-dimensional nonuniform single-electron and two-interacting-particle (TIP) systems. For single-electron systems, the extended and localized states can be distinguished by the ratio R. There are sharp transitions in the ratio R at mobility edges. For TIP systems, the localization properties of particle states can also be reflected by the ratio R. These results are in accordance with what obtained by other methods. Therefore, the ratio R is a suitable quantity to characterize the localization properties of particle states for these 1D nonuniform systems.

Keywords

Potential Model Average Ratio Localization Property Extended State Anderson Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958) CrossRefADSGoogle Scholar
  2. 2.
    T.V. Ramakrishnan, P.A. Lee, Rev. Mod. Phys. 57, 287 (1985) CrossRefADSGoogle Scholar
  3. 3.
    M. Griniasty, S. Fishman, Phys. Rev. Lett. 60, 1334 (1988) CrossRefADSGoogle Scholar
  4. 4.
    D.J. Thouless, Phys. Rev. Lett. 61, 2141 (1988) CrossRefADSGoogle Scholar
  5. 5.
    S. Das Sarma, S. He, X.C. Xie, Phys. Rev. Lett. 61, 2144 (1988) CrossRefADSGoogle Scholar
  6. 6.
    D.H. Dunlap, H.L. Wu, P.W. Phillips, Phys. Rev. Lett. 65, 88 (1990) CrossRefADSGoogle Scholar
  7. 7.
    F.A.B.F. de Moura, M.L. Lyra, Phys. Rev. Lett. 81, 3735 (1998) CrossRefADSGoogle Scholar
  8. 8.
    L.Y. Gong, P.Q. Tong, Phys. Rev. A 71, 042333 (2005) CrossRefADSGoogle Scholar
  9. 9.
    H. Hiramoto, M. Kohmoto, Phys. Rev. Lett. 62, 2714 (1989) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    T. Kaya, Eur. Phys. J. B 60, 313 (2007) CrossRefADSGoogle Scholar
  11. 11.
    T. Kaya, Eur. Phys. J. B 65, 49 (2008) CrossRefADSGoogle Scholar
  12. 12.
    L.Y. Gong, P.Q. Tong, Z.C. Zhou, Eur. Phys. J. B 77, 413 (2010) Google Scholar
  13. 13.
    D. Thouless, Phys. Rep. 13, 93 (1974) CrossRefADSGoogle Scholar
  14. 14.
    E. Hofestetter, M. Schreiber, Phys. Rev. B 48, 16979 (1993) CrossRefADSGoogle Scholar
  15. 15.
    G. Schubert, A. Weiße, G. Wellein, H. Fehske, High Performance Computing in Science and Engineering, Garching 2004, edited by A. Bode, F. Durst (Springer, Heidelberg, 2005), pp. 237–250 Google Scholar
  16. 16.
    D.L. Shepelyansky, Phys. Rev. Lett. 73, 2607 (1994) CrossRefADSGoogle Scholar
  17. 17.
    P.E. de Brito, E.S. Rodrigues, H.N. Nazareno, Phys. Rev. B 73, 014301 (2006) CrossRefADSGoogle Scholar
  18. 18.
    S.N. Evangelou, S.J. Xiong, E.N. Economou, Phys. Rev. B 54, 8469 (1996) CrossRefADSGoogle Scholar
  19. 19.
    P. Zanardi, Phys. Rev. A. 65, 042101 (2002) CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    L.Y. Gong, P.Q. Tong, Phys. Rev. E 74, 056103 (2006) CrossRefADSGoogle Scholar
  21. 21.
    L.Y. Gong, P.Q. Tong, Phys. Rev. B 76, 085121 (2007) CrossRefADSGoogle Scholar
  22. 22.
    R. Abou-Chacra, P.W. Anderson, D.J. Thouless, J. Phys. C 6, 1734 (1973) CrossRefADSGoogle Scholar
  23. 23.
    F.X. Bronold, A. Alvermann, H. Feshke, Philos. Mag. 84, 673 (2004) CrossRefADSGoogle Scholar
  24. 24.
    A. Alvermann, G. Schubert, A. Weiße, F.X. Bronold, H. Fehske, Physica B 359-361, 789 (2005) CrossRefADSGoogle Scholar
  25. 25.
    A. Alvermann, H. Fehske, J. Phys. Conf. Ser. 35, 145 (2006) CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    G. Schubert, A. Weiße, H. Fehske, Phys. Rev. B 71, 045126 (2005) CrossRefADSGoogle Scholar
  27. 27.
    G. Schubert, J. Schleede, K. Byczuk, H. Fehske, D. Vollhardt, Phys. Rev. B 81, 155106 (2010) CrossRefADSGoogle Scholar
  28. 28.
    J. Schleede, G. Schubert, H. Fehske, Eur. Phys. Lett. 90, 17002 (2010) CrossRefADSGoogle Scholar
  29. 29.
    V. Dobrosavljević, G. Kotliar, Phys. Rev. Lett. 78, 3943 (1997) CrossRefADSGoogle Scholar
  30. 30.
    K. Byczuk, W. Hofstetter, D. Vollhardt, Phys. Rev. Lett. 94, 056404 (2005) CrossRefADSGoogle Scholar
  31. 31.
    D. Semmler, K. Byczuk, W. Hofstetter, Phys. Rev. B 81, 115111 (2010) CrossRefADSGoogle Scholar
  32. 32.
    A. Alvermann, H. Feshke, Eur. Phys. J. B 48, 295 (2005) CrossRefADSGoogle Scholar
  33. 33.
    Y. Song, W.A. Atkinson, R. Wortis, Phys. Rev. B 76, 045105 (2007) CrossRefADSGoogle Scholar
  34. 34.
    R. Wortis, Y. Song, W.A. Atkinson, Physica B 403, 1468 (2008) CrossRefADSGoogle Scholar
  35. 35.
    Green’s Functions in Quantum Physics, edited by E.N. Economou (Springer-Verlag, Berlin, 1983) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of PhysicsNanjing Normal UniversityNanjingP.R. China
  2. 2.Center of Optofluidic Technology, College of Science, Nanjing University of Posts and TelecommunicationsNanjingP.R. China

Personalised recommendations