The European Physical Journal B

, Volume 80, Issue 1, pp 105–114 | Cite as

Logical XOR gate response in a quantum interferometer: A spin dependent transport

Article

Abstract.

We examine spin dependent transport in a quantum interferometer composed of magnetic atomic sites based on transfer matrix formalism. The interferometer, threaded by a magnetic flux ϕ, is symmetrically attached to two semi-infinite one-dimensional (1D) non-magnetic electrodes, namely, source and drain. A simple tight-binding model is used to describe the bridge system, and, here we address numerically the conductance-energy and current-voltage characteristics as functions of the interferometer-to-electrode coupling strength, magnetic flux and the orientation of local the magnetic moments associated with each atomic site. Quite interestingly it is observed that, for ϕ = ϕ0/2 (ϕ0 = ch/e, the elementary flux-quantum) a logical XOR gate like response is observed, depending on the orientation of the local magnetic moments associated with the magnetic atoms in the upper and lower arms of the interferometer, and it can be changed by an externally applied gate magnetic field. This aspect may be utilized in designing a spin based electronic logic gate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Ball, Nature (London) 404, 918 (2000) CrossRefGoogle Scholar
  2. 2.
    S. Datta, Electronic transport in mesoscopic systems (Cambridge University Press, Cambridge, 1997) Google Scholar
  3. 3.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001) CrossRefADSGoogle Scholar
  4. 4.
    J. Stöhr, H.C. Siegmann, Magnetism- From Fundamental to Nanoscale Dynamics (Springer, 2006) Google Scholar
  5. 5.
    J. Daughton, J. Appl. Phys. 81, 3758 (1997) CrossRefADSGoogle Scholar
  6. 6.
    A.A. Shokri, A. Saffarzadeh, Eur. Phys. J. B 42, 187 (2004) CrossRefADSGoogle Scholar
  7. 7.
    A.A. Shokri, A. Saffarzadeh, J. Phys.: Condens. Matter 16, 4455 (2004) CrossRefADSGoogle Scholar
  8. 8.
    M. Mardaani, K. Esfarjani, Physica E 25, 119 (2004) CrossRefADSGoogle Scholar
  9. 9.
    M. Mardaani, A.A. Shokri, K. Esfarjani, Physica E 28, 150 (2005) CrossRefADSGoogle Scholar
  10. 10.
    A.A. Shokri, M. Mardaani, K. Esfarjani, Physica E 27, 325 (2005) CrossRefADSGoogle Scholar
  11. 11.
    A.A. Shokri, M. Mardaani, Solid State Commun. 137, 53 (2006) CrossRefADSGoogle Scholar
  12. 12.
    U. Gerland, J. von Delft, T.A. Costi, Y. Oreg, Phys. Rev. Lett. 84, 3710 (2000) CrossRefADSGoogle Scholar
  13. 13.
    D. Goldnaber-Gordan, H. Shtrikman, D. Mahalu, D. Abosch-Magder, U. Meirav, M.A. Kastner, Nature (London) 391, 156 (1998) CrossRefADSGoogle Scholar
  14. 14.
    S.M. Cronenwett, T.H. Oosterkamp, L.P. Kouwenhoven, Science 281, 5 (1998) CrossRefGoogle Scholar
  15. 15.
    H. Yu, J.-Q. Liang, Phys. Rev. B 72, 075351 (2005) CrossRefADSGoogle Scholar
  16. 16.
    J. König, Y. Gefen, Phys. Rev. B 65, 045316 (2002) CrossRefADSGoogle Scholar
  17. 17.
    F. Chi, S.-S. Li, J. Appl. Phys. 100, 113703 (2006) 1pt CrossRefADSGoogle Scholar
  18. 18.
    Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, Oxford, 2002) Google Scholar
  19. 19.
    S. Bellucci, P. Onorato, Phys. Rev. B 78, 235312 (2008) CrossRefADSGoogle Scholar
  20. 20.
    S. Bellucci, P. Onorato, J. Phys.: Condens. Matter 19, 395020 (2007) CrossRefGoogle Scholar
  21. 21.
    P. Földi, O. Kálmán, M.G. Benedict, F.M. Peeters, Nano Lett. 8, 2556 (2008)1pt CrossRefADSGoogle Scholar
  22. 22.
    P. Földi, O. Kálmán, F.M. Peeters, Phys. Rev. B 80, 125324 (2009) CrossRefADSGoogle Scholar
  23. 23.
    B. Molnár, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 72, 075330 (2005) CrossRefADSGoogle Scholar
  24. 24.
    Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959) CrossRefMATHADSMathSciNetGoogle Scholar
  25. 25.
    G. Kirczenow, Phys. Rev. B 72, 075351 (2005) CrossRefGoogle Scholar
  26. 26.
    P.A. Lee, D.S. Fisher, Phys. Rev. Lett. 47, 882 (1981)1pt CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Q. Sun, J. Wang, H. Guo, Phys. Rev. B 71, 165310 (2005)1pt CrossRefADSGoogle Scholar
  28. 28.
    S.K. Maiti, Solid State Commun. 149, 1623 (2009) CrossRefADSGoogle Scholar
  29. 29.
    J. Heinrichs, J. Phys.: Condens. Matter 12, 5565 (2000) CrossRefADSGoogle Scholar
  30. 30.
    S. Chattopadhyah, A. Chakrabarti, J. Phys.: Condens. Matter 16, 313 (2004) CrossRefADSGoogle Scholar
  31. 31.
    R. Landauer, IBM J. Res. Dev. 32, 306 (1988) CrossRefMathSciNetGoogle Scholar
  32. 32.
    M. Büttiker, IBM J. Res. Dev. 32, 317 (1988) CrossRefGoogle Scholar
  33. 33.
    A. Ghosh, S.N. Karmakar, Phys. Rev. B 58, 2586 (1998) CrossRefADSGoogle Scholar
  34. 34.
    C.E.T. Goncalves da Silva, B. Koiller, Solid State Commun. 40, 215 (1981) CrossRefADSGoogle Scholar
  35. 35.
    Z.-G. Zhu, G. Su, B. Jin, Q.-R. Zheng, Phys. Lett. A 306, 249 (2003) CrossRefADSGoogle Scholar
  36. 36.
    X. Qian, X. Gu, Y. Ji, Rev. Sci. Instrum. 81, 106106 (2010) CrossRefADSGoogle Scholar
  37. 37.
    O. Hod, R. Baer, E. Rabani, J. Am. Chem. Soc. 127, 1648 (2005) CrossRefGoogle Scholar
  38. 38.
    C. Texier, P. Delplace, G. Montambaux, Phys. Rev. B 80, 205413 (2009) CrossRefADSGoogle Scholar
  39. 39.
    O. Hod, R. Baer, E. Rabani, Phys. Rev. Lett. 97, 266803 (2006) CrossRefADSGoogle Scholar
  40. 40.
    P. Földi, B. Molnar, M.G. Benedict, F.M. Peeters, Phys. Rev. B 71, 033309 (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Moumita Dey
    • 1
  • Santanu K. Maiti
    • 1
    • 2
  • S. N. Karmakar
    • 1
  1. 1.Theoretical Condensed Matter Physics DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Department of PhysicsNarasinha Dutt CollegeHowrahIndia

Personalised recommendations