The European Physical Journal B

, Volume 84, Issue 4, pp 501–520 | Cite as

Structure-preserving model reduction of large-scale logistics networks

Applications for supply chains
  • B. Scholz-Reiter
  • F. WirthEmail author
  • S. Dashkovskiy
  • T. Makuschewitz
  • M. Schönlein
  • M. Kosmykov
Regular Article Focus Section on Frontiers in Network Science: Advances and Applications


We investigate the problem of model reduction with a view to large-scale logistics networks, specifically supply chains. Such networks are modeled by means of graphs, which describe the structure of material flow. An aim of the proposed model reduction procedure is to preserve important features within the network. As a new methodology we introduce the LogRank as a measure for the importance of locations, which is based on the structure of the flows within the network. We argue that these properties reflect relative importance of locations. Based on the LogRank we identify subgraphs of the network that can be neglected or aggregated. The effect of this is discussed for a few motifs. Using this approach we present a meta algorithm for structure-preserving model reduction that can be adapted to different mathematical modeling frameworks. The capabilities of the approach are demonstrated with a test case, where a logistics network is modeled as a Jackson network, i.e., a particular type of queueing network.


Arrival Rate Model Reduction Vertex Versus Logistics Network Candidate List 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Fleming, Y. Hayuth, Journal of Transport Geography 2, 3 (1994)CrossRefGoogle Scholar
  2. 2.
    R. Guimera, L. Amaral, Eur. Phys. J. B Condens. Matter Complex Syst. 38, 381 (2004)CrossRefGoogle Scholar
  3. 3.
    B. Derudder, L. Devriendt, F. Witlox, Tijd. voor Econ. Soc. Geog. 98, 307 (2007)CrossRefGoogle Scholar
  4. 4.
    H. Wiendahl, S. Lutz, CIRP Annals-Manufacturing Technology 51, 573 (2002)CrossRefGoogle Scholar
  5. 5.
    T. Choi, K. Dooley, M. Rungtusanatham, J. Oper. Manage. 19, 351 (2001)CrossRefGoogle Scholar
  6. 6.
    A. Surana, S. Kumara, M. Greaves, U. Raghavan, Int. J. Prod. Res. 43, 4235 (2005)CrossRefGoogle Scholar
  7. 7.
    S. Pathak, J. Day, A. Nair, W. Sawaya, M. Kristal, Dec. Sci. 38, 547 (2007)CrossRefGoogle Scholar
  8. 8.
    B. Beamon, Int. J. Prod. Econ. 55, 281 (1998)CrossRefGoogle Scholar
  9. 9.
    J. Buzacott, J. Shanthikumar, Stochastic Models of Manufacturing Systems (Prentice Hall, Englewood Cliffs, NJ, 1993)Google Scholar
  10. 10.
    H. Chen, D.D. Yao, Fundamentals of Queueing Networks. Performance, Asymptotics, and Optimization, Applications of Mathematics (Springer, New York, NY, 2001), Vol. 46Google Scholar
  11. 11.
    P. Kumar, Queueing Syst. 13, 87 (1993)CrossRefzbMATHGoogle Scholar
  12. 12.
    J. Dai, Ann. Appl. Probab. 5, 49 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    D. Armbruster, P. Degond, C. Ringhofer, SIAM J. Appl. Math. 66, 896 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    S. Göttlich, M. Herty, A. Klar, Communications in Mathematical Sciences 3, 545 (2005)zbMATHMathSciNetGoogle Scholar
  15. 15.
    D. Helbing, S. Lämmer, in Networks of Interacting Machines: Production Organization in Complex Industrial Systems and Biological Cells, edited by D. Armbruster, K. Kaneko, A. Mikhailov, Lecture Notes in Complex Systems (World Scientific, Singapore, 2005), Vol. 3, pp. 33–66Google Scholar
  16. 16.
    M. Laumanns, E. Lefeber, Physica A 363, 24 (2006)CrossRefADSGoogle Scholar
  17. 17.
    Y. Ouyang, C. Daganzo, Manage. Sci. 52, 1544 (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    B. Scholz-Reiter, F. Wirth, S. Dashkovskiy, M. Schönlein, T. Makuschewitz, M. Kosmykov, Some Remarks on Stability and Robustness of Production Networks Based on Fluid Models, in Dynamics in Logistics, Second International Conference, LDIC 2009, edited by H.J. Kreowski, B. Scholz-Reiter, K.D. Thoben (Springer, Berlin, Heidelberg, 2009), pp. 27–35Google Scholar
  19. 19.
    B. Scholz-Reiter, F. Wirth, T. Makuschewitz, M. Schönlein, CIRP Annals-Manufacturing Technology 60, 445 (2011)CrossRefGoogle Scholar
  20. 20.
    B. Moore, IEEE Trans. Automat. Contr. 26, 17 (1981)CrossRefzbMATHGoogle Scholar
  21. 21.
    A.C. Antoulas, Approximation of Large-Scale Dynamical Systems (Advances in Design and Control 6. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 2005)Google Scholar
  22. 22.
    Dimension Reduction of Large-Scale Systems, edited by P. Benner, V. Mehrmann, D.C. Sorensen, Lecture Notes in Computational Science and Engineering (Springer, Berlin, Heidelberg, New York, 2005), Vol. 45, Proceedings of a Workshop held in Oberwolfach (Germany, October, 2003)Google Scholar
  23. 23.
    Z. Bai, Appl. Numer. Math. 43, 9 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    K. Kunisch, S. Volkwein, Numer. Math. 90, 117 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    S. Lall, J. Marsden, S. Glavaški, Int. J. Robust Nonlinear Control 12, 519 (2002)CrossRefzbMATHGoogle Scholar
  26. 26.
    N. Kazantzis, C. Kravaris, L. Syrou, Nonlinear Dynam. 59, 183 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Model Order Reduction: Theory, Research Aspects and Applications, Mathematics in Industry, edited by W. Schilders, H.A. van der Vorst, J. Rommes (Springer, Berlin Heidelberg, 2008), Vol. 13Google Scholar
  28. 28.
    L. Page, S. Brin, R. Motwani, T. Winograd, Tech. Rep., Technical Report, Stanford University, 1998Google Scholar
  29. 29.
    J.M. Kleinberg, J. ACM 46, 604 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    R. Lempel, S. Moran, Computer Networks 33, 387 (2000)CrossRefGoogle Scholar
  31. 31.
    A.N. Langville, C.D. Meyer, Google’s PageRank and Beyond: The Science of Search Engine Rankings (Princton University Press, Princeton, NJ, 2006)Google Scholar
  32. 32.
    D. Donato, L. Laura, S. Leonardi, S. Millozzi, Eur. Phys. J. B Condens. Matter Complex Syst. 38, 239 (2004)CrossRefGoogle Scholar
  33. 33.
    T.S. Evans, R. Lambiotte, Eur. Phys. J. B Condens. Matter Complex Syst. 77, 265 (2010)CrossRefGoogle Scholar
  34. 34.
    S. Fortunato, Phys. Rep. 486, 75 (2010)CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics (SIAM, Philadelphia, PA, 1994), Vol. 9Google Scholar
  36. 36.
    J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Monographs in Mathematics (Springer, 2009)Google Scholar
  37. 37.
    L. Krajewski, B. King, L. Ritzman, D. Wong, Manage. Sci. 33, 39 (1987)CrossRefGoogle Scholar
  38. 38.
    S. Serra-Capizzano, SIAM. J. Matrix Anal. Appl. 27, 305 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Science 298, 824 (2002)CrossRefADSGoogle Scholar
  40. 40.
    A. Altman, M. Tennenholtz, Ranking Systems: The PageRank Axioms, in Proc. 6th ACM Conference on Electronic Commerce (2005), pp. 1–8Google Scholar
  41. 41.
    A. Altman, M. Tennenholtz, J. Artif. Int. Res. 31, 473 (2008)zbMATHMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • B. Scholz-Reiter
    • 1
  • F. Wirth
    • 2
    Email author
  • S. Dashkovskiy
    • 3
  • T. Makuschewitz
    • 1
  • M. Schönlein
    • 2
  • M. Kosmykov
    • 4
  1. 1.BIBA — Bremer Institut für Produktion und Logistik GmbHUniversity of BremenBremenGermany
  2. 2.Institute for MathematicsUniversity of WürzburgWürzburgGermany
  3. 3.Department of Civil EngineeringUniversity of Applied Sciences ErfurtErfurtGermany
  4. 4.Center of Industrial MathematicsUniversity of BremenBremenGermany

Personalised recommendations