The European Physical Journal B

, Volume 84, Issue 4, pp 563–577 | Cite as

Urban road networks — spatial networks with universal geometric features?

A case study on Germany’s largest cities
  • S. H. Y. Chan
  • R. V. DonnerEmail author
  • S. Lämmer
Regular Article Focus Section on Frontiers in Network Science: Advances and Applications


Urban road networks have distinct geometric properties that are partially determined by their (quasi-) two-dimensional structure. In this work, we study these properties for 20 of the largest German cities. We find that the small-scale geometry of all examined road networks is extremely similar. The object-size distributions of road segments and the resulting cellular structures are characterised by heavy tails. As a specific feature, a large degree of rectangularity is observed in all networks, with link angle distributions approximately described by stretched exponential functions. We present a rigorous statistical analysis of the main geometric characteristics and discuss their mutual interrelationships. Our results demonstrate the fundamental importance of cost-efficiency constraints for the time evolution of urban road networks.


Road Network Degree Distribution Node Degree Road Segment Link Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.H. Strogatz, Nature 410, 268 (2001)CrossRefADSGoogle Scholar
  2. 2.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)CrossRefzbMATHADSGoogle Scholar
  3. 3.
    S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)CrossRefADSGoogle Scholar
  4. 4.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003)CrossRefzbMATHADSMathSciNetGoogle Scholar
  5. 5.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 426, 175 (2006)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    D.J. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness (Princeton University Press, Princeton, 1999)Google Scholar
  7. 7.
    Handbook of Graphs and Networks: From the Genome to the Internet, edited by S. Bornholdt, H.G. Schuster (Wiley-VCH, Weinheim, 2003)Google Scholar
  8. 8.
    S.N. Dorogovtesev, J.F.F. Mendes, Evolution of Networks (Oxford University Press, Oxford, 2003)Google Scholar
  9. 9.
    Statistical Mechanics of Complex Networks, edited by R. Pastor-Satorras, M. Rubi, A. Diaz-Guilera, (Springer, Berlin, 2003)Google Scholar
  10. 10.
    Complex Networks, edited by E. Ben-Naim, H. Frauenfelder, Z. Toroczkai (Springer, Berlin, 2004)Google Scholar
  11. 11.
    M. Marchiori, V. Latora, Physica A 285, 539 (2000)CrossRefzbMATHADSGoogle Scholar
  12. 12.
    V. Latora, M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001)CrossRefADSGoogle Scholar
  13. 13.
    V. Latora, M. Marchiori, Physica A 314, 109 (2002)CrossRefzbMATHADSGoogle Scholar
  14. 14.
    P. Sen, S. Dasgupta, A. Chatterjee, P.A. Sreeram, G. Mukherjee, S.S. Manna, Phys. Rev. E 67, 036106 (2003)CrossRefADSGoogle Scholar
  15. 15.
    K.A. Seaton, L.M. Hackett, Physica A 339, 635 (2004)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    I. Vragović, E. Louis, A. Díaz-Guilera, Phys. Rev. E 71, 036122 (2005)CrossRefADSGoogle Scholar
  17. 17.
    M. Kurant, P. Thiran, Phys. Rev. Lett. 96, 138701 (2006)CrossRefADSGoogle Scholar
  18. 18.
    M. Kurant, P. Thiran, Phys. Rev. E 74, 036114 (2006)CrossRefADSGoogle Scholar
  19. 19.
    K.H. Chang, K. Kim, H. Oshima, S.-M. Yoon, J. Korean Phys. Soc. 48, S143 (2006)Google Scholar
  20. 20.
    Z. Xu, D.Z. Sui, J. Geograph. Syst. 9, 189 (2007)CrossRefADSGoogle Scholar
  21. 21.
    W. Li, X. Cai, Physica A 382, 693 (2007)CrossRefADSGoogle Scholar
  22. 22.
    K. Lee, W.-S. Jung, J.S. Park, M.Y. Choi, Physica A 387, 6231 (2008)CrossRefADSGoogle Scholar
  23. 23.
    W. Ru, T. Jiang-Xia, W. Xin, W. Du-Juan, C. Xu, Physica A 387, 5639 (2008)CrossRefADSGoogle Scholar
  24. 24.
    A. Doménech, Physica A 388, 4658 (2009)CrossRefADSGoogle Scholar
  25. 25.
    L.A.N. Amaral, A. Scala, M. Barthélémy, H.E. Stanley, Proc. Natl. Acad. Sci. USA 97, 11149 (2000)CrossRefADSGoogle Scholar
  26. 26.
    L.-P. Chi, R. Wang, H. Su, X.-P. Xu, J.-S. Zhao, W. Li, X. Cai, Chin. Phys. Lett. 20, 1393 (2003)CrossRefADSGoogle Scholar
  27. 27.
    W. Li, X. Cai, Phys. Rev. E 69, 046106 (2004)CrossRefADSGoogle Scholar
  28. 28.
    A. Barrat, M. Barthélémy, R. Pastor-Satorras, A. Vespignani, Proc. Natl. Acad. Sci. USA 101, 3747 (2004)CrossRefADSGoogle Scholar
  29. 29.
    R. Guimerà, L.A.N. Amaral, Eur. Phys. J. B 38, 381 (2004)CrossRefADSGoogle Scholar
  30. 30.
    R. Guimerà, S. Mossa, A. Turtschi, L.A.N. Amaral, Proc. Natl. Acad. Sci. USA 102, 7794 (2005)CrossRefzbMATHADSMathSciNetGoogle Scholar
  31. 31.
    R. Wang, X. Cai, Chin. Phys. Lett. 22, 2715 (2005)CrossRefADSGoogle Scholar
  32. 32.
    W. Li, Q.A. Wang, L. Nivanen, A. Le Méhauté, Physica A 368, 262 (2006)Google Scholar
  33. 33.
    M. Guida, F. Maria, Chaos Solitons Fractals 31, 527 (2007)CrossRefADSGoogle Scholar
  34. 34.
    G. Bagler, Physica A 387, 2972 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    G. Bagler, Complex Network view of performance and rosks on Airport Networks, in Airports: Performance, Risks, and Problems, edited by P.B. Larauge, M.E. Castille (Nova, Hauppauge, 2009), pp. 199–205Google Scholar
  36. 36.
    L.E.C. da Rocha, J. Stat. Mech. Theory Exper. P04020 (2009)Google Scholar
  37. 37.
    J. Wu, Z. Gao, H. Sun, H. Huang, Mod. Phys. Lett. B 18, 1043 (2004)CrossRefADSGoogle Scholar
  38. 38.
    J. Sienkiewicz, J.A. Hołyst, Phys. Rev. E 72, 046127 (2005)CrossRefADSGoogle Scholar
  39. 39.
    J. Sienkiewicz, J.A. Hołyst, Acta Phys. Polon. B 36, 1771 (2005)ADSGoogle Scholar
  40. 40.
    M.T. Gastner, M.E.J. Newman, J. Stat. Mech. Theory Exper. P01015 (2006)Google Scholar
  41. 41.
    P. Li, X. Xiong, Z.-L. Qiao, G.-Q. Yuan, X. Sun, B.-H. Wang, Chin. Phys. Lett. 23, 3384 (2006)CrossRefADSGoogle Scholar
  42. 42.
    C. von Ferber, T. Holovatch, Yu. Holovatch, V. Palchykov, Physica A 380, 585 (2007)CrossRefADSGoogle Scholar
  43. 43.
    C. von Ferber, T. Holovatch, Yu. Holovatch, V. Palchykov, Eur. Phys. J. B 68, 261 (2009)CrossRefADSGoogle Scholar
  44. 44.
    B. Berche, C. von Ferber, T. Holovatch, Yu. Holovatch, Eur. Phys. J. B 71, 125 (2009)CrossRefADSGoogle Scholar
  45. 45.
    X. Xu, J. Hu, F. Liu, Chaos 17, 023129 (2007)CrossRefADSGoogle Scholar
  46. 46.
    Y. Hu, D. Zhu, Physica A 388, 2061 (2009)CrossRefADSGoogle Scholar
  47. 47.
    P. Kaluza, A. Kölzsch, M.T. Gastner, B. Blasius, J. R. Soc. Interface 7, 1093 (2010)CrossRefGoogle Scholar
  48. 48.
    M.T. Gastner, M.E.J. Newman, Eur. Phys. J. B 49, 247 (2006)CrossRefADSGoogle Scholar
  49. 49.
    P. Erdős, A. Rényi, Publ. Math. Debrecen 6, 290 (1959)MathSciNetGoogle Scholar
  50. 50.
    B. Bollobás, Random Graphs, 2nd edn. (Cambridge University Press, Cambridge, 2001)Google Scholar
  51. 51.
    A.-L. Barabási, R. Albert, Science 286, 509 (1999)CrossRefMathSciNetGoogle Scholar
  52. 52.
    S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000)CrossRefADSGoogle Scholar
  53. 53.
    G. Caldarelli, Scale-Free Networks – Complex Webs in Nature and Technology (Oxford University Press, Oxford, 2007)Google Scholar
  54. 54.
    E. Schaur, Ungeplante Siedlungen/Non-planned Settlements (Krämer, Stuttgart, 1991)Google Scholar
  55. 55.
    P. Franckhauser, La Fractalité des Structures urbaines (Anthropos, Paris, 1994)Google Scholar
  56. 56.
    Self-Organization of Complex Structures: From Individual to Complex Dynamics, edited by F. Schweitzer (Gordon and Breach, London, 1997)Google Scholar
  57. 57.
    W. Weidlich, G. Haag, An Integrated Model of Transport and Urban Evolution: With an Application to a Metropole of an Emerging Nation (Springer, Berlin, 1999)Google Scholar
  58. 58.
    W. Weidlich, Sociodynamics: A Systematic Approach to Mathematical Modelling in the Social Sciences (Harwood Academic Publishers, New York, 2000)Google Scholar
  59. 59.
    Fundamental Principles of Urban Growth, edited by K. Humpert, K. Brenner, S. Becker (Müller and Busmann, Dortmund, 2002)Google Scholar
  60. 60.
    F. Schweitzer, Brownian Agents and Active Particles. Collective Dynamics in the Natural and Social Sciences (Springer, Berlin, 2003)Google Scholar
  61. 61.
    M. Batty, Cities and Complexity. Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals (MIT Press, Cambridge, 2005)Google Scholar
  62. 62.
    C. Kühnert, D. Helbing, G.B. West, Physica A 363, 96 (2006)CrossRefADSGoogle Scholar
  63. 63.
    L.M.A. Bettencourt, J. Lobo, D. Helbing, C. Kühnert, G.B. West, Proc. Natl. Acad. Sci. USA 104, 7301 (2007)CrossRefADSGoogle Scholar
  64. 64.
    D. Helbing, C. Kühnert, S. Lämmer, A. Johansson, B. Gehlsen, H. Ammoser, G.B. West, Power laws in urban supply networks, social systems, and dense pedestrian crowds, in Complexity Perspectives in innovation and Social Change, edited by D. Lane, S. van der Leeuw, D. Pumain, G.B. West (Springer, Berlin, 2009), pp. 433–450Google Scholar
  65. 65.
    B. Jiang, C. Claramunt, Environ. Plan. B 31, 151 (2004)CrossRefGoogle Scholar
  66. 66.
    B. Jiang, C. Claramunt, GeoInformatica 8, 157 (2004)CrossRefGoogle Scholar
  67. 67.
    S. Lämmer, B. Gehlsen, D. Helbing, Physica A 363, 89 (2006)CrossRefADSGoogle Scholar
  68. 68.
    J. Buhl, J. Gautrais, N. Reeves, R.V. Solé, S. Valverde, P. Kuntz, G. Theraulaz, Eur. Phys. J. B 49, 513 (2006)CrossRefADSGoogle Scholar
  69. 69.
    S. Scellato, A. Cardillo, V. Latora, S. Porta, Eur. Phys. J. B 50, 221 (2006)CrossRefADSGoogle Scholar
  70. 70.
    A. Cardillo, S. Scellato, V. Latora, S. Porta, Phys. Rev. E 73, 066107 (2006)CrossRefADSGoogle Scholar
  71. 71.
    P. Crucitti, V. Latora, S. Porta, Chaos 16, 015113 (2006)CrossRefADSGoogle Scholar
  72. 72.
    P. Crucitti, V. Latora, S. Porta, Phys. Rev. E 73, 036125 (2006)CrossRefADSGoogle Scholar
  73. 73.
    S. Porta, P. Crucitti, V. Latora, Environ. Plan. B 33, 705 (2006)CrossRefGoogle Scholar
  74. 74.
    S. Porta, P. Crucitti, V. Latora, Physica A 369, 853 (2006)CrossRefADSGoogle Scholar
  75. 75.
    V. Kalapala, V. Sanwalani, A. Clauset, C. Moore, Phys. Rev. E 73, 026130 (2006)CrossRefADSGoogle Scholar
  76. 76.
    G.B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, 1996)Google Scholar
  77. 77.
    A.P. Masucci, D. Smith, A. Crooks, M. Batty, Eur. Phys. J. B 71, 259 (2009)CrossRefzbMATHADSMathSciNetGoogle Scholar
  78. 78.
    J. Laherrère, D. Sornette, Eur. Phys. J. B 2, 525 (1998)CrossRefADSGoogle Scholar
  79. 79.
    B.M. Roehner, D. Sornette, Eur. Phys. J. B 4, 387 (1998)CrossRefADSGoogle Scholar
  80. 80.
    J.L. McCauley, G.H. Gunaratne, Physica A 329, 178 (2003)CrossRefzbMATHADSGoogle Scholar
  81. 81.
    S.G. Mallat, IEEE Trans. Pat. Anal. Mach. Intell. 11, 674 (1989)CrossRefzbMATHGoogle Scholar
  82. 82.
    B.S. Everitt, D.J. Hand, Finite Mixture Distributions (Chapmann and Hall, London, 1981)Google Scholar
  83. 83.
    C. Godrèche, I. Kostov, I. Yekutieli, Phys. Rev. Lett. 69, 2674 (1992)CrossRefzbMATHADSMathSciNetGoogle Scholar
  84. 84.
    M. Barthélemy, A. Flammini, Phys. Rev. Lett. 100, 138702 (2008)CrossRefADSGoogle Scholar
  85. 85.
    M. Barthélemy, A. Flammini, Netw. Spat. Econ. 9, 401 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  86. 86.
    M. Batty, R. Carvalho, A. Hudson-Smith, R. Milton, D. Smith, P. Steadman, Eur. Phys. J. B 63, 303 (2008)CrossRefzbMATHADSMathSciNetGoogle Scholar
  87. 87.
    M. Rosvall, A. Trusina, P. Minnhagen, K. Sneppen, Phys. Rev. Lett. 94, 028701 (2005)CrossRefADSGoogle Scholar
  88. 88.
    R. Wagner, Physica A 387, 2120 (2008)CrossRefADSGoogle Scholar
  89. 89.
    B. Jiang, Physica A 384, 647 (2007)CrossRefADSGoogle Scholar
  90. 90.
    J. Buhl, J. Gautrais, R.V. Solé, P. Kuntz, S. Valverde, J.L. Deneubourg, G. Theraulaz, Eur. Phys. J. B 42, 123 (2004)CrossRefADSGoogle Scholar
  91. 91.
    A. Perna, S. Valverde, J. Gautrais, C. Jost, R. Solé, P. Kuntz, G. Theraulaz, Physica A 387, 6235 (2008)CrossRefADSGoogle Scholar
  92. 92.
    T. Gross, B. Blasius, J. Roy. Soc. Interface 5, 259 (2008)CrossRefGoogle Scholar
  93. 93.
    Adaptive Networks – Theory, Models and Applications, edited by T. Gross, H. Sayama (Springer, Berlin, 2009)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute for Transport and EconomicsDresden University of TechnologyDresdenGermany
  2. 2.Department of PhysicsThe Chinese University of Hong KongShatin, N.T.Hong Kong
  3. 3.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations