Advertisement

The European Physical Journal B

, Volume 82, Issue 2, pp 173–178 | Cite as

Offsprings of a point vortex

  • X. LeonciniEmail author
  • A. Barrat
  • C. Josserand
  • S. Villain-Guillot
Statistical and Nonlinear Physics

Abstract

The distribution engendered by successive splitting of one point vortex are considered. The process of splitting a vortex in three using a reverse three-point vortex collapse course is analysed in great details and shown to be dissipative. A simple process of successive splitting is then defined and the resulting vorticity distribution and vortex populations are analysed.

Keywords

Vortex Vorticity Probability Density Function Probability Density Function Point Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Frisch, Turbulence: the legacy of A.N. Kolmogorov (Cambridge Univ. Press, 1995) Google Scholar
  2. 2.
    R. Benzi, G. Paladin, S. Patarnello, P. Santangelo, A. Vulpiani, J. Phys. A 19, 3771 (1986) ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    R. Benzi, S. Patarnello, P. Santangelo, J. Phys. A 21, 1221 (1988) ADSCrossRefGoogle Scholar
  4. 4.
    J.C. McWilliams, J. Fluid Mech. 146, 21 (1984) ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    J.B. Weiss, J.C. McWilliams, Phys. Fluids A 5, 608 (1992) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    C.F. Carnevale, J.C. McWilliams, Y. Pomeau, J.B. Weiss, W.R. Young, Phys. Rev. Lett. 66, 2735 (1991) ADSCrossRefGoogle Scholar
  7. 7.
    N.J. Zabusky, J.C. McWilliams, Phys. Fluids 25, 2175 (1982) ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    P.W.C. Vobseek, J.H.G.M. van Geffen, V.V. Meleshko, G.J.F. van Heijst, Phys. Fluids 9, 3315 (1997) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    O.U. Velasco Fuentes, G.J.F. van Heijst, N.P.M. van Lipzig, J. Fluid Mech. 307, 11 (1996) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    R. Benzi, M. Colella, M. Briscolini, P. Santangelo, Phys. Fluids A 4, 1036 (1992) ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    D.G. Dritschel, N.J. Zabusky, Phys. Fluids 8, 1252 (1996) MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    H. Aref, Turbulent Statistical dynamics of a system of point vortice (Birkhäuser Verlag, 1999), p. 151, Trends in Mathematics, ISBN 978-3-7643-6150-1 Google Scholar
  13. 13.
    J.B. Weiss, A. Provenzale, J.C. McWilliams, Phys. Fluids 10, 1929 (1998) MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    L. Onsager, Nuovo Cimento, Suppl. 6, 279 (1949) MathSciNetGoogle Scholar
  15. 15.
    G. Joyce, D. Montgomery, J. Plasma Phys. 10, 107 (1973) ADSCrossRefGoogle Scholar
  16. 16.
    J. Fröhlich, D. Ruelle, Commun. Math. Phys. 87, 1 (1982) ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    E. Caglioti, P.L. Lions, C. Marchioro, M. Pulvirenti, Commun. Math. Phys. 143, 501 (1992) MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    R. Robert, J. Sommeria, Phys. Rev. Lett. 69, 2776 (1992) MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    F. Spineanu, M. Vlad, Phys. Rev. Lett. 95, 235003 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    P.H. Chavanis, M. Lemou, Eur. Phys. J. B 59, 217 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    J.L. Synge, Can. J. Math. 1, 257 (1949) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    E.A. Novikov, Y.B. Sedov, Sov. Phys. JETP 22, 297 (1979) ADSGoogle Scholar
  23. 23.
    X. Leoncini, L. Kuznetsov, G.M. Zaslavsky, Phys. Fluids 12, 1911 (2000) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    E.A. Novikov, Sov. Phys. JETP 41, 937 (1975) ADSGoogle Scholar
  25. 25.
    H. Aref, Phys. Fluids 22, 393 (1979) ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    H. Aref, Ann. Rev. Fluid Mech. 15, 345 (1983) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    J. Tavantzis, L. Ting, Phys. Fluids 31, 1392 (1988) MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • X. Leoncini
    • 1
    Email author
  • A. Barrat
    • 1
  • C. Josserand
    • 2
  • S. Villain-Guillot
    • 3
  1. 1.Centre de Physique Théorique, Aix-Marseille Université, CNRS (UMR 6207)Marseille Cedex 9France
  2. 2.Institut Jean le Rond d’Alembert, CNRS & Université Pierre et Marie Curie (UMR 7190)Paris Cedex 05France
  3. 3.C.P.M.O.H. (UMR 5798), Université Bordeaux 1Talence CedexFrance

Personalised recommendations