Advertisement

The European Physical Journal B

, Volume 83, Issue 4, pp 507–518 | Cite as

Social dynamics with peer support on heterogeneous networks

The “mafia model”
  • M. Balbás GambraEmail author
  • E. Frey
Regular Article Interdisciplinary Physics

Abstract

Human behavior often exhibits a scheme in which individuals adopt indifferent, neutral, or radical positions on a given topic. The mechanisms leading to community formation are strongly related with social pressure and the topology of the contact network. Here, we discuss an approach to model social behavior which accounts for the protection by alike peers proportional to their relative abundance in the closest neighborhood. We explore the ensuing non-linear dynamics emphasizing the role of the specific structure of the social network, modeled by scale-free graphs. We find that both coexistence of opinions and consensus on the default position are possible stationary states of the model. In particular, we show how these states critically depend on the heterogeneity of the social network and the specific distribution of external control elements.

Keywords

Transition Rate Complete Graph Heterogeneous Network Control Element Police Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    P. Clifford, A. Sudbury, Biometrika 60, 581 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    R.A. Holley, T.M. Liggett, Ann. Probab. 3, 643 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    M.J. De Oliveira, J.F.F. Mendes, M.A. Santos, J. Phys. A 26, 2317 (1993) ADSCrossRefGoogle Scholar
  5. 5.
    T.M. Liggett, Interacting particle systems (Springer-Verlag, New York-Berlin, 1985)Google Scholar
  6. 6.
    C. Castellano, R. Pastor-Satorras, J. Stat. Mech., P05001 (2006)Google Scholar
  7. 7.
    C. Castellano, V. Loreto, A. Barrat, F. Cecconi, D. Parisi, Phys. Rev. E 71, 66107 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    L. Frachebourg, P.L. Krapivsky, Phys. Rev. E 53, 3009 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    P.L. Krapivsky, Phys. Rev. A 45, 1067 (1992) ADSCrossRefGoogle Scholar
  10. 10.
    K. Suchecki, V.M. Eguíluz, M.S. Miguel, Europhys. Lett. 69, 228 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    V. Sood, T. Antal, S. Redner, Phys. Rev. E 77, 41121 (2008) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    V. Sood, S. Redner, Phys. Rev. Lett. 94, 178701 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    C. Castellano, D. Vilone, A. Vespignani, Europhys. Lett. 63, 153 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    K. Suchecki, V.M. Eguíluz, San M. Miguel, Phys. Rev. E 72, 36132 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    F. Vázquez, V.M. Eguíluz, New J. Phys. 10, 063011 (2008) CrossRefGoogle Scholar
  16. 16.
    C. Sire, S.N. Majumdar, Phys. Rev. E 52, 244 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    F. Vázquez, P.L. Krapivsky, S. Redner, J. Phys. A 36, L61 (2003)zbMATHCrossRefGoogle Scholar
  18. 18.
    R. Lambiotte, S. Redner, J. Stat. Mech., L10001 (2007)Google Scholar
  19. 19.
    M. Mobilia, A. Petersen, S. Redner, J. Stat. Mech., P08029 (2007)Google Scholar
  20. 20.
    M. Mobilia, Phys. Rev. Lett. 91, 28701 (2003) ADSCrossRefGoogle Scholar
  21. 21.
    L. Dall’Asta, C. Castellano, Europhys. Lett. 77, 60005 (2007) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    S. Galam, J. Math. Psychol. 30, 426 (1986)zbMATHCrossRefGoogle Scholar
  23. 23.
    P.L. Krapivsky, S. Redner, Phys. Rev. E 63, 66123 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    P. Chen, S. Redner, J. Phys. A 38, 7239 (2005) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    S. Galam, Eur. Phys. J. B 25, 403 (2002)ADSGoogle Scholar
  26. 26.
    S. Galam, F. Jacobs, Physica A 381, 366 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    M. Mobilia, S. Redner, Phys. Rev. E 68, 46106 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    K. Sznajd-Weron, J. Sznajd, Int. J. Mod. Phys. C 11, 1157 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    F. Slanina, H. Lavicka, Eur. Phys. J. B 35, 279 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    B. Latané, Am. Psychol. 36, 343 (1981)CrossRefGoogle Scholar
  31. 31.
    B. Latané, A. Nowak, J. Szamrej, Psychol. Rev. 97, 362 (1990)CrossRefGoogle Scholar
  32. 32.
    M. Lewenstein, A. Nowak, B. Latané, Phys. Rev. A 45, 763 (1992)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    D.M. Abrams, S.H. Strogatz, Nature 424, 900 (2003) ADSCrossRefGoogle Scholar
  34. 34.
    F. Vázquez, X. Castelló, San M. Miguel, J. Stat. Mech., P04007 (2010)Google Scholar
  35. 35.
    F. Schweitzer, L. Behera, Eur. Phys. J. B 67, 301 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    F. Vázquez, C. López, Phys. Rev. E 78, 061127 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    M. Balbás Gambra, The role of structures in collective processes, Ph.D. thesis, Ludwig-Maximilians-Universität München, 2010Google Scholar
  38. 38.
    R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSzbMATHCrossRefGoogle Scholar
  39. 39.
    R. Cohen, S. Havlin, Phys. Rev. Lett. 90, 58701 (2003) ADSCrossRefGoogle Scholar
  40. 40.
    M. Catanzaro, M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 71, 27103 (2005) ADSCrossRefGoogle Scholar
  41. 41.
    R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65, 36104 (2002) ADSCrossRefGoogle Scholar
  42. 42.
    R.M. Anderson, R.M. May, Science 215, 1053 (1982) MathSciNetADSCrossRefzbMATHGoogle Scholar
  43. 43.
    T. Reichenbach, M. Mobilia, E. Frey, Nature 448, 1046 (2007) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Arnold Sommerfeld Center for Theoretical Physics and CeNS, Department of PhysicsLudwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations