The European Physical Journal B

, Volume 79, Issue 2, pp 121–137 | Cite as

The insulating state of matter: a geometrical theory

Article

Abstract.

In 1964 Kohn published the milestone paper “Theory of the insulating state”, according to which insulators and metals differ in their ground state. Even before the system is excited by any probe, a different organization of the electrons is present in the ground state and this is the key feature discriminating between insulators and metals. However, the theory of the insulating state remained somewhat incomplete until the late 1990s; this review addresses the recent developments. The many-body ground wavefunction of any insulator is characterized by means of geometrical concepts (Berry phase, connection, curvature, Chern number, quantum metric). Among them, it is the quantum metric which sharply characterizes the insulating state of matter. The theory deals on a common ground with several kinds of insulators: band insulators, Mott insulators, Anderson insulators, quantum Hall insulators, Chern and topological insulators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Bloch, Z. Phys. 52, 555 (1928) ADSGoogle Scholar
  2. 2.
    A.H. Wilson, Proc. Roy. Soc. A 133, 458 (1931) MATHCrossRefADSGoogle Scholar
  3. 3.
    A.H. Wilson, Proc. Roy. Soc. A 134, 277 (1931) MATHCrossRefADSGoogle Scholar
  4. 4.
    N.F. Mott, Proc. Phys. Soc. (London) 62, 416 (1949) CrossRefADSGoogle Scholar
  5. 5.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958) CrossRefADSGoogle Scholar
  6. 6.
    N. Mott, Metal-Insulator Transitions, 2nd edn. (Taylor & Francis, London, 1990) Google Scholar
  7. 7.
    50 Years of Anderson Localization, edited by E. Abrahams (World Scientific, Singapore, 2010) Google Scholar
  8. 8.
    W. Kohn, Phys. Rev. 133, A171 (1964) CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    W. Kohn, in Many-Body Physics, edited by C. DeWitt, R. Balian (Gordon and Breach, New York, 1968), p. 351 Google Scholar
  10. 10.
    D. Vanderbilt, R. Resta, in Conceptual foundations of materials: A standard model for ground- and excited-state properties, edited by S.G. Louie, M.L. Cohen (Elsevier, 2006), p. 139 Google Scholar
  11. 11.
    R. Resta, D. Vanderbilt, in Physics of Ferroelectrics: a Modern Perspective, Topics in Applied Physics, edited by Ch.H. Ahn, K.M. Rabe, J.-M. Triscone (Springer-Verlag, 2007), Vol. 105, p. 31 Google Scholar
  12. 12.
    R. Resta, J. Phys.: Condens. Matter 22, 123201 (2010) CrossRefADSGoogle Scholar
  13. 13.
    R. Resta, S. Sorella, Phys. Rev. Lett. 82, 370 (1999) CrossRefADSGoogle Scholar
  14. 14.
    I. Souza, T. Wilkens, R.M. Martin, Phys. Rev. B 62, 1666 (2000) CrossRefADSGoogle Scholar
  15. 15.
    R. Resta, J. Phys.: Condens. Matter 14, R625 (2002) CrossRefADSGoogle Scholar
  16. 16.
    D. Bures, Trans. Am. Math. Soc. 135, 199 (1969) MATHMathSciNetGoogle Scholar
  17. 17.
    M.V. Berry, Proc. Roy. Soc. Lond. A 392, 45 (1984) MATHCrossRefADSGoogle Scholar
  18. 18.
    Geometric Phases in Physics, edited by A. Shapere, F. Wilczek (World Scientific, Singapore, 1989) Google Scholar
  19. 19.
    D.J. Thouless, Topological Quantum Numbers in Nonrelativistic Physics (World Scientific, Singapore, 1998) Google Scholar
  20. 20.
    A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanzinger, The Geometric Phase in Quantum Systems (Springer, Berlin, 2003) Google Scholar
  21. 21.
    R. Resta, J. Phys.: Condens. Matter 12, R107 (2000) CrossRefADSGoogle Scholar
  22. 22.
    D. Xiao, M.-C. Chang, Q. Niu, Rev. Mod. Phys. 82, 1959 (2010) CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Reading, 1994), p. 140 Google Scholar
  24. 24.
    D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982) CrossRefADSGoogle Scholar
  25. 25.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005) CrossRefADSGoogle Scholar
  26. 26.
    D.N. Sheng, Z.Y. Weng, L. Sheng, F.D.M. Haldane, Phys. Rev. Lett. 97, 036808 (2006) CrossRefADSGoogle Scholar
  27. 27.
    S.-C. Zhang, Physics 1, 6 (2008) CrossRefGoogle Scholar
  28. 28.
    Y.L. Chen et al., Science 325, 178 (2009) CrossRefADSGoogle Scholar
  29. 29.
    J.E. Moore, Physics 2, 82 (2009) CrossRefGoogle Scholar
  30. 30.
    X.L. Qi, S.C. Zhang, Phys. Today 63, 38 (2010) CrossRefGoogle Scholar
  31. 31.
    M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010) CrossRefADSGoogle Scholar
  32. 32.
    J.P. Provost, G. Vallee, Commun. Math. Phys. 76, 289 (1980) MATHCrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959), reprinted in reference [18], p. 104 MATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures in Physics (Addison Wesley, Reading, 1964), Vol. 2, Sect. 15-4 Google Scholar
  35. 35.
    R. Resta, Phys. Rev. Lett. 80, 1800 (1998) CrossRefADSGoogle Scholar
  36. 36.
    R. Resta, J. Chem. Phys. 124, 104104 (2006) CrossRefADSGoogle Scholar
  37. 37.
    R. Resta, Phys. Rev. Lett. 95, 196805 (2005) CrossRefADSGoogle Scholar
  38. 38.
    D.N. Zubarev, Soviet Phys. Ushpekhi 3, 320 (1960) CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    D.N. Zubarev, Non-Equilibrium Statistical Mechanics (Consultants Bureau, New York, 1974) Google Scholar
  40. 40.
    R. McWeeny, Methods of Molecular Quantum Mechanics, 2nd edn. (Academic, London, 1992) Google Scholar
  41. 41.
    R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II, Nonequilibrium Statistical Mechanics, Springer Series in Solid-State Sciences (Springer, Berlin, 1985), Vol. 31 Google Scholar
  42. 42.
    D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, Reading, 1975) Google Scholar
  43. 43.
    R. Resta, Phys. Rev. Lett. 96, 137601 (2006) CrossRefADSGoogle Scholar
  44. 44.
    C. Sgiarovello, M. Peressi, R. Resta, Phys. Rev. 64, 115202 (2001) CrossRefGoogle Scholar
  45. 45.
    M. Veithen, X. Gonze, Ph. Ghosez, Phys. Rev. B 66, 235113 (2002) CrossRefADSGoogle Scholar
  46. 46.
    N.D.M. Hine, W.M.C. Foulkes, J. Phys.: Condens. Matter 19, 506212 (2007) CrossRefGoogle Scholar
  47. 47.
    A. Monari, G.L. Bendazzoli, S. Evangelisti, J. Chem. Phys. 129, 134104 (2008) CrossRefADSGoogle Scholar
  48. 48.
    C. Aebischer, D. Baeriswyl, R.M. Noack, Phys. Rev. Lett. 86, 468 (2001) CrossRefADSGoogle Scholar
  49. 49.
    V. Vetere, A. Monari, G.L. Bendazzoli, S. Evangelisti, B. Paulus, J. Chem. Phys. 128, 214701 (2008) CrossRefGoogle Scholar
  50. 50.
    G.L. Bendazzoli, S. Evangelisti, A. Monari, R. Resta, J. Chem. Phys. 133, 064703 (2010) CrossRefADSGoogle Scholar
  51. 51.
    T. Thonhauser, D. Vanderbilt, Phys. Rev. B 74, 235111 (2006) CrossRefADSGoogle Scholar
  52. 52.
    A.A. Soluyanov, D. Vanderbilt, Phys. Rev. B, in press Google Scholar
  53. 53.
    E. Akkermans, J. Math. Phys. 38, 1781 (1997) MATHCrossRefMathSciNetADSGoogle Scholar
  54. 54.
    W. Kohn, Phys. Rev. Lett. 2, 393 (1959) MATHCrossRefADSGoogle Scholar
  55. 55.
    J. des Cloizeaux, Phys. Rev. 135, A685 (1964) CrossRefMathSciNetGoogle Scholar
  56. 56.
    J. des Cloizeaux, Phys. Rev. 135, A697 (1964) Google Scholar
  57. 57.
    S. Ismail-Beigi, T.A. Arias, Phys. Rev. Lett. 82, 2127 (1999) CrossRefADSGoogle Scholar
  58. 58.
    L. He, D. Vanderbilt, Phys. Rev. Lett. 86, 5341 (2001) CrossRefADSGoogle Scholar
  59. 59.
    G.F. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005) Google Scholar
  60. 60.
    W. Kohn, Phys. Rev. Lett. 76, 3168 (1996) CrossRefADSGoogle Scholar
  61. 61.
    N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1997) CrossRefADSGoogle Scholar
  62. 62.
    F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988) CrossRefMathSciNetADSGoogle Scholar
  63. 63.
    D. Ceresoli, T. Thonhauser, D. Vanderbilt, R. Resta, Phys. Rev. B 74, 024408 (2006) CrossRefADSGoogle Scholar
  64. 64.
    S. Coh, D. Vanderbilt, Phys. Rev. Lett. 102, 107603 (2009) CrossRefADSGoogle Scholar
  65. 65.
    D.J. Thouless, J. Phys. C 17, L325 (1984) CrossRefMathSciNetADSGoogle Scholar
  66. 66.
    C. Brouder, G. Panati, M. Calandra, Ch. Mourougane, N. Marzari, Phys. Rev. Lett. 98, 046402 (2007) CrossRefADSGoogle Scholar
  67. 67.
    J.G. Àngyàn, Int. J. Quantum Chem. 109, 2340 (2009) CrossRefADSGoogle Scholar
  68. 68.
    J.G. Àngyàn, Curr. Org. Chem., in press Google Scholar
  69. 69.
    R. Resta, S. Sorella, Phys. Rev. Lett. 87, 4738 (1995) CrossRefADSGoogle Scholar
  70. 70.
    T. Wilkens, R.M. Martin, Phys. Rev. B 63, 235108 (2001) CrossRefADSGoogle Scholar
  71. 71.
    B. Kramer, A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993) CrossRefADSGoogle Scholar
  72. 72.
    D.J. Thouless, Phys. Rep. 13, 93 (1974) CrossRefADSGoogle Scholar
  73. 73.
    A. Lagendijk, B. van Tiggelen, D.S. Wiersma, Phys. Today 62, 24 (2009) CrossRefGoogle Scholar
  74. 74.
    Q. Niu, D.J. Thouless, Y.S. Wu, Phys. Rev. B 31, 3372 (1985) CrossRefMathSciNetADSGoogle Scholar
  75. 75.
    M. Taillefumier, V.K. Dugaev, B. Canals, C. Lacroix, P. Bruno, Phys. Rev. B 78, 155330 (2008) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Università di TriesteTriesteItaly
  2. 2.EMOCRITOS National Simulation CenterDIstituto Officina dei Materiali (CNR)TriesteItaly

Personalised recommendations