Advertisement

On the magnetism of Ln2/3Cu3Ti4O12 (Ln = lanthanide)

  • 215 Accesses

  • 20 Citations

Abstract.

The magnetic and thermodynamic properties of the complete Ln2/3Cu3Ti4O12 series were investigated. Here Ln stands for the lanthanides La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. All the samples investigated crystallize in the space group \(Im\bar{3}\) with lattice constants that follow the lanthanide contraction. The lattice constant of the Ce compound reveals the presence of Ce4+ leading to the composition Ce1/2Cu3Ti4O12. From magnetic susceptibility and electron-spin resonance experiments it can be concluded that the copper ions always carry a spin S = 1/2 and order antiferromagnetically close to 25 K. The Curie-Weiss temperatures can approximately be calculated assuming a two-sublattice model corresponding to the copper and lanthanide ions, respectively. It seems that the magnetic moments of the heavy rare earths are weakly coupled to the copper spins, while for the light lanthanides no such coupling was found. The 4f moments remain paramagnetic down to the lowest temperatures, with the exception of the Tm compound, which indicates enhanced Van-Vleck magnetism due to a non-magnetic singlet ground state of the crystal-field split 4f manifold. From specific-heat measurements we accurately determined the antiferromagnetic ordering temperature and obtained information on the crystal-field states of the rare-earth ions.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    A.N. Vasil’ev, O.S. Volkova, Low Temp. Phys. 33, 895 (2007)

  2. 2.

    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

  3. 3.

    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

  4. 4.

    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

  5. 5.

    P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 172102 (2004)

  6. 6.

    P. Lunkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, A. Loidl, Eur. Phys. J. Spec. Top. 180, 61 (2010)

  7. 7.

    Z. Zeng, M. Greenblatt, M.A. Subramanian, M. Croft, Phys. Rev. Lett. 82, 3164 (1999)

  8. 8.

    R. Weht, W.E. Pickett, Phys. Rev. B 65, 014415 (2002)

  9. 9.

    W. Kobayashi, I. Terasaki, J. Takeya, I. Tsukada, Y. Ando, J. Phys. Soc. Jpn 73, 2373 (2004)

  10. 10.

    A. Krimmel, A. Guenther, W. Kraetschmer, H. Dekinger, N. Buettgen, A. Loidl, S.G. Ebbinghaus, E.-W. Scheidt, W. Scherer, Phys. Rev. B 78, 165126 (2008)

  11. 11.

    A. Krimmel, A. Guenther, W. Kraetschmer, H. Dekinger, N. Buettgen, V. Eyert, A. Loidl, D.V. Sheptyakov, E.-W. Scheidt, W. Scherer, Phys. Rev. B 80, R121101 (2009)

  12. 12.

    N. Buettgen, H.-A. Krug von Nidda, W. Kraetschmer, A. Guenther, S. Widmann, S. Riegg, A. Krimmel, A. Loidl, J. Low Temp. Phys. 161, 148 (2010)

  13. 13.

    Y.W. Long, N. Hayashi, T. Saito, M. Azuma, S. Muranaka, Y. Shimakawa, Nature 458, 60 (2009)

  14. 14.

    Y.W. Long, Y. Shimakawa, New J. Phys. 12, 063029 (2010)

  15. 15.

    A. Deschanvres, B. Raveau, F. Tollemer, Bull. Soc. Chim. Fr. 11, 4077 (1967)

  16. 16.

    B. Bochu, M.N. Deschizeaux, J.C. Joubert, A. Collomb, J. Chenavas, M. Marezio, J. Solid State Chem. 29, 291 (1979)

  17. 17.

    M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)

  18. 18.

    J.J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, J. Appl. Phys. 98, 093703 (2005)

  19. 19.

    J. Sebald, S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, S. Riegg, A. Reller, A. Loidl, Solid State Commun. 150, 857 (2010)

  20. 20.

    S. Krohns, J. Lu, P. Lunkenheimer, V. Brize, C. Autret-Lambert, M. Gervais, F. Gervais, F. Bouree, F. Porcher, A. Loidl, Eur. Phys. J. B 72, 173 (2009)

  21. 21.

    V. Brize, C. Autret-Lambert, J. Wolfman, M. Gervais, P. Simon, F. Gervais, Solid State Sci. 11, 875 (2009)

  22. 22.

    Y.J. Kim, S. Wakimoto, S.M. Shapiro, P.M. Gehring, A.P. Ramirez, Solid State Commun. 121, 625 (2002)

  23. 23.

    A. Koitzsch, G. Blumberg, A. Gozar, B. Dennis, A.P. Ramirez, S. Trebst, S.A. Wakimoto, Phys. Rev. B 65, 052406 (2002)

  24. 24.

    A.P. Ramirez, G. Lawes, D. Li, M.A. Subramanian, Solid State Commun. 131, 251 (2004)

  25. 25.

    I. Terasaki, M. Iwakawa, T. Nakano, A. Tsukuda, W. Kobayashi, Dalton Transactions 39, 1005 (2010)

  26. 26.

    J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby, A.W. Sleight, Chem. Mater. 16, 5223 (2004)

  27. 27.

    R.K. Grubbs, E.L. Venturini, P.G. Clem, J.J. Richardson, B.A. Tuttle, G.A. Samara, Phys. Rev. B 72, 104111 (2005)

  28. 28.

    B.R. Cooper, Phys. Rev. 163, 444 (1967)

  29. 29.

    J. Hemberger, F. Schrettle, A. Pimenov, P. Lunkenheimer, V. Yu. Ivanov, A.A. Mukhin, A.M. Balbashov, A. Loidl, Phys. Rev. B 75, 035118 (2007)

  30. 30.

    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970)

  31. 31.

    M.A. Pires, C. Israel, W. Iwamoto, R.R. Urbano, O. Agüero, I. Torriani, C. Rettori, P.G. Pagliuso, Z. Le, J.L. Cohn, S.B. Oseroff, Phys. Rev. B 73, 224404 (2006)

Download references

Author information

Correspondence to S. Krohns.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dittl, A., Krohns, S., Sebald, J. et al. On the magnetism of Ln2/3Cu3Ti4O12 (Ln = lanthanide). Eur. Phys. J. B 79, 391–400 (2011) doi:10.1140/epjb/e2010-10796-1

Download citation

Keywords

  • Electron Spin Resonance Spectrum
  • Electron Spin Resonance Signal
  • CaCu
  • Heavy Rare Earth
  • Electron Spin Resonance Intensity