The European Physical Journal B

, Volume 78, Issue 3, pp 367–372 | Cite as

Spin-phonon coupling in multiferroic manganites RMnO3: comparison of pure (R = Eu, Gd, Tb) and substituted (R = Eu1- x Y x ) compounds

  • S. IssingEmail author
  • A. Pimenov
  • Y. Vu. Ivanov
  • A. A. Mukhin
  • J. Geurts


For rare-earth manganite RMnO3 compounds spin-phonon coupling manifests itself as a phonon softening in the temperature range of the magnetically ordered phases. Within this class of materials, a continuous tuning of the lattice and thus also of the magnetic properties of multiferroic manganites is achieved by Y doping in substituted Eu1- x Y x MnO3. We compare the impact on spin-phonon coupling within this partial-substitution approach in a series of Eu1- x Y x MnO3 samples 0 x 0.5) with the effect of a complete exchange of the rare earth ions R3+ in a series of pure RMnO3 compounds (R = Eu, Gd, Tb). For this purpose we employ polarized Raman scattering in the 10–300 K temperature range. The low-temperature results show phonon softening in all investigated compounds. For decreasing R3+ radius, i.e. an increasing orthorhombic distortion and magnetic frustration, we observe in both systems a weakening of the spin-phonon coupling. For known sublattice magnetization within the MnO2-plane, quantitative results for the spin-phonon coupling constant are derived for both cases within a molecular field approximation. Our results show, that the spin-phonon coupling strength in the magnetically ordered phases of the various investigated manganites does not correlate with the magnetization pattern. Instead, the pure RMnO3 compounds and the substituted Eu1- x Y x MnO3 fit excellently within a common scheme, in which the weakening of the spin-phonon coupling reflects the degree of tilting of the MnO6 octahedra due to the orthorhombic distortion of the crystal lattice.


Manganite Phonon Mode Phonon Frequency Sublattice Magnetization Orthorhombic Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007) CrossRefADSGoogle Scholar
  2. 2.
    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003) CrossRefADSGoogle Scholar
  3. 3.
    M.N. Iliev, M.V. Abrashev, H.-G. Lee, V.N. Popov, Y.Y. Sun, C. Thomsen, R.L. Meng, C.W. Chu, Phys. Rev. B 57, 2872 (1998) CrossRefADSGoogle Scholar
  4. 4.
    T. Kimura, S. Ishihara, H. Shintani, T. Arima, K.T. Takahashi, K. Ishizaka, Y. Tokura, Phys. Rev. B 68, R060403 (2003) CrossRefADSGoogle Scholar
  5. 5.
    J. Hemberger, F. Schrettle, A. Pimenov, P. Lunkenheimer, V.Yu. Ivanov, A.A. Mukhin, A.M. Balbashov, A. Loidl, Phys. Rev. B 75, 035118 (2007) CrossRefADSGoogle Scholar
  6. 6.
    E. Granado, A. García, J.A. Sanjurjo, C. Rettori, I. Torriani, F. Prado, R.D. Sánchez, A. Caneiro, S.B. Oseroff, Phys. Rev. B 60, 11879 (1999) CrossRefADSGoogle Scholar
  7. 7.
    J. Laverdière, S. Jandl, A.A. Mukhin, V.Yu. Ivanov, V.G. Ivanov, M.N. Iliev, Phys. Rev. B 73, 214301 (2006) CrossRefADSGoogle Scholar
  8. 8.
    S. Issing, A. Pimenov, V.Yu. Ivanov, A.A. Mukhin, J. Geurts, Phys. Rev. B 81, 024304 (2010) CrossRefADSGoogle Scholar
  9. 9.
    J. Agostinho Moreira, A. Almeida, W.S. Ferreira, J.E. Araújo, A.M. Pereira, M.R. Chaves, J. Kreisel, S.M.F. Vilela, P.B. Tavares, Phys. Rev. B 81, 054447 (2010) CrossRefADSGoogle Scholar
  10. 10.
    W.S. Ferreira, J. Agostinho Moreira, A. Almeida, M.R. Chaves, J.P. Araújo, J.B. Oliveira, J.M. Machado Da Silva, M.A. Sa, T.M. Mendonca, P. Simeao Carvalho, J. Kreisel, J.L. Ribeiro, L.G. Vieira, P.B. Tavares, S. Mendonca, Phys. Rev. B 79, 054303 (2009) CrossRefADSGoogle Scholar
  11. 11.
    A.M. Balbashov, S.G. Karabashev, Ya.M. Mukovskiy, S.A. Zverkov, J. Crys. Grow. 167, 365 (1996) CrossRefADSGoogle Scholar
  12. 12.
    J. Hemberger, S. Lobina, H.-A. Krug von Nidda, N. Tristan, V.Yu. Ivanov, A.A. Mukhin, A.M. Balbashov, A. Loidl, Phys. Rev. B 70, 024414 (2004) CrossRefADSGoogle Scholar
  13. 13.
    A. Pimenov, A.A. Mukhin, V.Yu. Ivanov, V.D. Travkin, A.M. Balbashov, A. Loidl, Nat. Phys. 2, 97 (2006) CrossRefGoogle Scholar
  14. 14.
    S. Koritnig, Landolt-Börnstein: Numerical Data and Functional Relationsships in Science and Technology, Part 4, 6th edn. (Springer, Berlin, 1955), Vol. 1 Google Scholar
  15. 15.
    P. Yu, M. Cardona, Fundamentals of Semiconductors, 3rd edn. (Springer, New York, 2001) Google Scholar
  16. 16.
    M.N. Iliev, M.V. Abrashev, J. Laverdiere, S. Jandl, M.M. Gospodinov, Y.-Q. Wang, Y.-Y. Sun, Phys. Rev. B 73, 064302 (2006) CrossRefADSGoogle Scholar
  17. 17.
    S. Issing, F. Fuchs, C. Ziereis, E. Batke, A. Pimenov, Y.Vu. Ivanov, A.A. Mukhin, J. Geurts, Eur. Phys. J. B 73, 353 (2010) CrossRefADSGoogle Scholar
  18. 18.
    M. Balkanski, R.F. Wallis, E. Haro, Phys. Rev. B 28, 1928 (1983) CrossRefADSGoogle Scholar
  19. 19.
    P. Kumar, S. Saha, D.V.S. Muthu, J.R. Sahu, A.K. Sood, C.N.R. Rao, J. Phys.: Condens. Matter 22, 115403 (2010) CrossRefADSGoogle Scholar
  20. 20.
    J. Blasco, C. Ritter, J. García, J.M. de Teresa, J. Pérez-Cacho, M.R. Ibarra, Phys. Rev. B 62, 5609 (2000) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • S. Issing
    • 1
    Email author
  • A. Pimenov
    • 2
  • Y. Vu. Ivanov
    • 3
  • A. A. Mukhin
    • 3
  • J. Geurts
    • 1
  1. 1.Physikalisches Institut (EP3)Universität WürzburgWürzburgGermany
  2. 2.Institut für FestkörperphysikTechnische Universität WienWienAustria
  3. 3.General Physics Insitute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations