The European Physical Journal B

, Volume 79, Issue 3, pp 351–356 | Cite as

Electronic properties of a quantum dot formed by the potentials associated with the surface acoustic wave and constrictions

Article

Abstract

The electronic structure of dynamic quantum dots formed by surface acoustic waves potential and the confinement potential produced by gate voltage has been investigated within the spin-density-functional theory. We found the addition energy of this kind quantum dot in general decreases as the electron number increases, so the basic feature of the quantized acoustoelectric current with multi-plateaus can be reproduced. The addition energy needed for a second electron entering into the dynamic quantum dot is found to be about 2.21 meV, which is in good agreement with experimental estimations. Moreover, the formation of the Wigner molecule-like states is observed when the number of electrons in the dot exceeds three. By the calculated addition energy and the evolution of the electron density in the presence of a magnetic field, we also explained the influence of the magnetic field on the acoustoelectric current appeared in the experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Shilton, V.I. Talyanskii, M. Pepper, D.A. Ritchie, J.E.F. Frost, C.J.B. Ford, C.G. Smith, G.A.C. Jones, J. Phys.: Condens. Matter 8, L531 (1996) CrossRefADSGoogle Scholar
  2. 2.
    V.I. Talyanskii, J.M. Shilton, M. Pepper, C.G. Smith, C.J.B. Ford, E.H. Linfield, D.A. Ritchie, G.A.C. Jones, Phys. Rev. B 56, 15180 (1997) CrossRefADSGoogle Scholar
  3. 3.
    J. Cunningham, V.I. Talyanskii, J.M. Shilton, M. Pepper, A. Kristensen, P.E. Lindelof, Phys. Rev. B 62, 1564 (2000) CrossRefADSGoogle Scholar
  4. 4.
    J.T. Janssen, A. Hartland, IEEE Trans. Instrum. Meas. 50, 227 (2001) CrossRefGoogle Scholar
  5. 5.
    J. Cunningham, V.I. Talyanskii, J.M. Shilton, M. Pepper, M.Y. Simmons, D.A. Ritchie, Phys. Rev. B 60, 4850 (1999) CrossRefADSGoogle Scholar
  6. 6.
    J.H. He, H.Z. Guo, L. Song, W. Zhang, J. Gao, C. Lu, Physica B 405, 404 (2010) CrossRefADSGoogle Scholar
  7. 7.
    S.J. Wright, M.D. Blumenthal, G. Gumbs, A.L. Thorn, M. Pepper, T.J.B.M. Janssen, S.N. Holmes, D. Anderson, G.A.C. Jones, C.A. Nicoll, D.A. Ritchie, Phys. Rev. B 78, 233311 (2008) CrossRefADSGoogle Scholar
  8. 8.
    B. Kaestner, C. Leicht, V. Kashcheyevs, K. Pierz, U. Siegner, H.W. Schumacher, Appl. Phys. Lett. 94, 012106 (2009) CrossRefADSGoogle Scholar
  9. 9.
    G.R. Aǐzin, G. Gumbs, M. Pepper, Phys. Rev. B 58, 10589 (1998) CrossRefGoogle Scholar
  10. 10.
    G. Gumbs, G.R. Aǐzin, M. Pepper, Phys. Rev. B 60, R13954 (1999) CrossRefADSGoogle Scholar
  11. 11.
    P.A. Maksym, Phys. Rev. B 61, 4727 (2000) CrossRefADSGoogle Scholar
  12. 12.
    K. Flensberg, Q. Niu, M. Pustilnik, Phys. Rev. B 60, R16291 (1999) CrossRefADSGoogle Scholar
  13. 13.
    A.M. Robinson, C.H.W. Barnes, Phys. Rev. B 63, 165418 (2001) CrossRefADSGoogle Scholar
  14. 14.
    G. Giavaras, Phys. Rev. B 81, 073302, (2010) Google Scholar
  15. 15.
    N.E. Fletcher, J. Ebbecke, T.J.B.M. Janssen, F.J. Ahlers, M. Pepper, H.E. Beere, D.A. Ritchie, Phys. Rev. B 68, 245310 (2003) CrossRefADSGoogle Scholar
  16. 16.
    W. Kohn, L. Sham, Phys. Rev. 140, A1133 (1965) CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    H. Saarikoski, E. Räsänen, S. Siljamäki, A. Harju, M.J. Puska, R.M. Nieminen, Eur. Phys. J. B 26, 241 (2002) ADSGoogle Scholar
  18. 18.
    E. Räsänen, H. Saarikoski, V.N. Stavrou, A. Harju, M.J. Puska, R.M. Nieminenl, Phys. Rev. B 67, 235307 (2003) CrossRefADSGoogle Scholar
  19. 19.
    C. Attaccalite, S. Moroni, P. Gori-Giorgi, G.B. Bachelet, Phys. Rev. Lett. 88, 256601 (2002) CrossRefADSGoogle Scholar
  20. 20.
    M. Heiskanen, T. Torsti, M.J. Puska, R.M. Nieminen, Phys. Rev. B 63, 245106 (2001) CrossRefADSGoogle Scholar
  21. 21.
    H.Z. Guo, J. Gao, C. Lu, J. Appl. Phys. 105, 124302 (2009) CrossRefADSGoogle Scholar
  22. 22.
    S.W. Chen, H.Z. Guo, W. Zhang, L. Song, C. Lu, J. Gao, Solid State Commun. 149, 1909 (2009) CrossRefADSGoogle Scholar
  23. 23.
    M.R. Astley, M. Kataoka, C.J.B. Ford, C.H.W. Barnes, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, M. Pepper, Physica E 40, 1136 (2007) CrossRefADSGoogle Scholar
  24. 24.
    M.R. Astley, M. Kataoka, C.J.B. Ford, C.H.W. Barnes, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, M. Pepper, Phys. Rev. Lett. 99, 156802 (2007) CrossRefADSGoogle Scholar
  25. 25.
    P. Utko, H.J. Bindslev, P.E. Lindelof, C.B. S\({\o}\)rensen, K. Gloos, J. Low Temp. Phys. 146, 607 (2007) CrossRefADSGoogle Scholar
  26. 26.
    M.D. Blumental, B. Kaestner, L. Li, S. Giblin, T.J.B.M. Janssen, M. Pepper, D. Anderson, G. Jones, D.A. Ritchie, Nat. Phys. 3 343 (2007) Google Scholar
  27. 27.
    L. Song, H. Yuan, C.Y. Zhang, L. Li, C. Lu, J. Gao, J. Appl. Phys. 106, 104508 (2009) CrossRefADSGoogle Scholar
  28. 28.
    W. Häusler, B. Kramer, J. Masek, Z. Phys. B: Condens. Matter 85, 435 (1999) CrossRefGoogle Scholar
  29. 29.
    K. Jauregui, W. Haüsler, B. Kramer, Europhys. Lett. 24, 581 (1993) CrossRefADSGoogle Scholar
  30. 30.
    S. Akbar, In-Ho Lee, Phys. Rev. B 63, 165301 (2001) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratory of Mesoscopic and Low Dimensional Physics, College of Physical Science and Technology, Sichuan UniversityChengduP.R. China
  2. 2.National Institute of Measurement and Testing TechnologyChengduP.R. China

Personalised recommendations