Advertisement

The European Physical Journal B

, Volume 79, Issue 1, pp 99–106 | Cite as

Dynamical phase transitions in Hegselmann-Krause model of opinion dynamics and consensus

  • F. SlaninaEmail author
Article

Abstract.

The dynamics of the model of agents with limited confidence introduced by Hegselmann and Krause exhibits multiple well-separated regimes characterised by the number of distinct clusters in the stationary state. We present indications that there are genuine dynamical phase transitions between these regimes. The main indicator is the divergence of the average evolution time required to reach the stationary state. The slowdown close to the transition is connected with the emergence of the groups of mediator agents which are very small but have decisive role in the process of social convergence. More detailed study shows that the histogram of the evolution times is composed of several peaks. These peaks are unambiguously interpreted as corresponding to mediator groups consisting of one, two, three etc. agents. Detailed study reveals that each transition possesses also an internal fine structure.

Keywords

System Size Opinion Dynamic Dynamical Phase Transition Mediator Agent Full Consensus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Callen, D. Shapero, Phys. Today 27, 23 (1974) CrossRefGoogle Scholar
  2. 2.
    Collective phenomena and the applicatios of physics to other fields of science, edited by N.A. Chigier, E.A. Stern (Brain Research Publications, Fayetteville, 1975) Google Scholar
  3. 3.
    W. Weidlich, Phys. Rep. 204, 1 (1991) CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    S. Galam, Y. Gefen, Y. Shapir, J. Math. Sociol. 9, 1 (1982) zbMATHCrossRefGoogle Scholar
  5. 5.
    S. Galam, J. Math. Psychol. 30, 426 (1986) zbMATHCrossRefGoogle Scholar
  6. 6.
    S. Galam, S. Moscovici, Eur. J. Soc. Psychol. 21, 49 (1991) CrossRefGoogle Scholar
  7. 7.
    S. Galam, Physica A 336, 49 (2004) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009) CrossRefADSGoogle Scholar
  9. 9.
    F. Slanina, in Encyclopedia of Complexity and Systems Science (Springer, New York, 2009), Vol. 8379 Google Scholar
  10. 10.
    T.M. Liggett, Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes (Springer, Berlin, 1999) Google Scholar
  11. 11.
    S. Galam, J. Stat. Phys. 61, 943 (1990) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    S. Galam, Physica A 274, 132 (1999) CrossRefADSGoogle Scholar
  13. 13.
    S. Galam, Physica A 285, 66 (2000) zbMATHCrossRefADSGoogle Scholar
  14. 14.
    K. Sznajd-Weron, J. Sznajd, Int. J. Mod. Phys. C 11, 1157 (2000) CrossRefADSGoogle Scholar
  15. 15.
    D. Stauffer, P.M.C. de Oliveira, arXiv:cond-mat/0208296
  16. 16.
    L. Behera, F. Schweitzer, Int. J. Mod. Phys. C 14, 1331 (2003) CrossRefADSGoogle Scholar
  17. 17.
    F. Slanina, H. Lavička, Eur. Phys. J. B 35, 279 (2003) CrossRefADSGoogle Scholar
  18. 18.
    S. Krupa, K. Sznajd-Weron, Int. J. Mod. Phys. C 16, 177 (2005) CrossRefGoogle Scholar
  19. 19.
    F. Slanina, K. Sznajd-Weron, P. Przybyła, Europhys. Lett. 82, 18006 (2008) CrossRefADSGoogle Scholar
  20. 20.
    R. Lambiotte, S. Redner, Europhys. Lett. 82, 18007 (2008) CrossRefADSGoogle Scholar
  21. 21.
    P.L. Krapivsky, S. Redner, Phys. Rev. Lett. 90, 238701 (2003) CrossRefADSGoogle Scholar
  22. 22.
    M. Mobilia, S. Redner, Phys. Rev. E 68, 046106 (2003) CrossRefADSGoogle Scholar
  23. 23.
    M.H. DeGroot, J. Am. Stat. Assoc. 69, 118 (1974) zbMATHCrossRefGoogle Scholar
  24. 24.
    R.L. Berger, J. Am. Stat. Assoc. 76, 415 (1981) zbMATHCrossRefGoogle Scholar
  25. 25.
    R. Axelrod, J. Confl. Resolut. 41, 203 (1997) CrossRefGoogle Scholar
  26. 26.
    C. Castellano, M. Marsili, A. Vespignani, Phys. Rev. Lett. 85, 3536 (2000) CrossRefADSGoogle Scholar
  27. 27.
    K. Klemm, V.M. Eguíluz, R. Toral, M. San Miguel, arXiv:cond-mat/0210173
  28. 28.
    F. Vazquez, P.L. Krapivsky, S. Redner, J. Phys. A: Math. Gen. 36, L61 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    K. Klemm, V.M. Eguíluz, R. Toral, M. San Miguel, Physica A 327, 1 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    K. Klemm, V.M. Eguíluz, R. Toral, M. San Miguel, Phys. Rev. E 67, 045101 (2003) CrossRefADSGoogle Scholar
  31. 31.
    F. Vazquez, S. Redner, J. Phys. A: Math. Gen. 37, 8479 (2004) zbMATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    D. Jacobmeier, Int. J. Mod. Phys. C 16, 633 (2005) CrossRefADSGoogle Scholar
  33. 33.
    K. Klemm, V.M. Eguíluz, R. Toral, M. San Miguel, J. Econ. Dyn. Control 29, 321 (2005) zbMATHCrossRefGoogle Scholar
  34. 34.
    J.C. González-Avella, M.G. Cosenza, K. Tucci, Phys. Rev. E 72, 065102 (2005) CrossRefADSGoogle Scholar
  35. 35.
    M.N. Kuperman, Phys. Rev. E 73, 046139 (2006) CrossRefADSGoogle Scholar
  36. 36.
    J.C. González-Avella, V.M. Eguíluz, M.G. Cosenza, K. Klemm, J.L. Herrera, M. San Miguel, Phys. Rev. E 73, 046119 (2006) CrossRefADSGoogle Scholar
  37. 37.
    F. Vazquez, S. Redner, Europhys. Lett. 78, 18002 (2007) CrossRefADSGoogle Scholar
  38. 38.
    G. Deffuant, D. Neau, F. Amblard, G. Weisbuch, Adv. Compl. Syst. 3, 87 (2000) CrossRefGoogle Scholar
  39. 39.
    G. Weisbuch, G. Deffuant, F. Amblard, J.P. Nadal, arXiv:cond-mat/0111494
  40. 40.
    G. Deffuant, F. Amblard, G. Weisbuch, T. Faure, J. Artif. Soc. Soc. Simulation 5, 4 (2002) http://jasss.soc.surrey.ac.uk/5/4/1.html URLGoogle Scholar
  41. 41.
    E. Ben-Naim, P.L. Krapivsky, S. Redner, Physica D 183, 190 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  42. 42.
    D. Stauffer, Int. J. Mod. Phys. C 13, 315 (2002) CrossRefADSGoogle Scholar
  43. 43.
    D. Stauffer, A.O. Sousa, C. Schulze, arXiv:cond-mat/0310243
  44. 44.
    G. Weisbuch, Eur. Phys. J. B 38, 339 (2004) CrossRefADSGoogle Scholar
  45. 45.
    D. Stauffer, H. Meyer-Ortmanns, J. Mod. Phys. C 15, 241 (2004) CrossRefADSGoogle Scholar
  46. 46.
    G. Deffuant, F. Amblard, G. Weisbuch, arXiv:cond-mat/0410199
  47. 47.
    F. Amblard, G. Deffuant, Physica A 343, 725 (2004) ADSGoogle Scholar
  48. 48.
    P. Assmann, Int. J. Mod. Phys. C 15, 1439 (2004) zbMATHCrossRefADSGoogle Scholar
  49. 49.
    S. Fortunato, Int. J. Mod. Phys. C 15, 1301 (2004) CrossRefADSGoogle Scholar
  50. 50.
    S. Fortunato, Int. J. Mod. Phys. C 16, 17 (2005) zbMATHCrossRefADSGoogle Scholar
  51. 51.
    G. Weisbuch, G. Deffuant, F. Amblard, Physica A 353, 555 (2005) CrossRefADSGoogle Scholar
  52. 52.
    J. Lorenz, Int. J. Mod. Phys. C 18, 1819 (2007) zbMATHCrossRefADSGoogle Scholar
  53. 53.
    R. Hegselmann, U. Krause, J. Artif. Soc. Soc. Simulation 5 (2002), http://jasss.soc.surrey.ac.uk/5/3/2.html
  54. 54.
    A. Pluchino, V. Latora, A. Rapisarda, Eur. Phys. J. B 50, 169 (2006) CrossRefADSGoogle Scholar
  55. 55.
    S. Fortunato, Int. J. Mod. Phys. C 15, 1021 (2004) zbMATHCrossRefADSGoogle Scholar
  56. 56.
    S. Fortunato, Physica A 348, 683 (2005) CrossRefADSGoogle Scholar
  57. 57.
    S. Fortunato, Int. J. Mod. Phys. C 16, 259 (2005) zbMATHCrossRefADSGoogle Scholar
  58. 58.
    S. Fortunato, arXiv:cond-mat/0501105
  59. 59.
    S. Fortunato, D. Stauffer, in Extreme Events in Nature and Society, edited by S. Albeverio, V. Jentsch, H. Kantz (Springer, Berlin, 2006), p. 233 Google Scholar
  60. 60.
    S. Fortunato, V. Latora, A. Pluchino, A. Rapisarda, Int. J. Mod. Phys. C 16, 1535 (2005) zbMATHCrossRefADSGoogle Scholar
  61. 61.
    R. Hegselmann, U. Krause, J. Artif. Soc. Soc. Simulation 9 (2006), http://jasss.soc.surrey.ac.uk/9/3/10.html
  62. 62.
    J. Lorenz, arXiv:0708.3293 (2007) Google Scholar
  63. 63.
    J. Lorenz, Complexity 15, 43 (2010) MathSciNetGoogle Scholar
  64. 64.
    J. Lorenz, arXiv:0806.1587 (2008) Google Scholar
  65. 65.
    J. Lorenz, EJESS 19, 213 (2006) Google Scholar
  66. 66.
    J. Lorenz, Thesis, Universität Bremen, 2007 Google Scholar
  67. 67.
    J. Lorenz, Physica A 355, 217 (2005) CrossRefADSMathSciNetGoogle Scholar
  68. 68.
    J. Lorenz, in Positive Systems, Lecture Notes in Control and Information Sciences (Springer, Berlin, 2006), Vol. 341, p. 209 Google Scholar
  69. 69.
    J. Lorenz, D.A. Lorenz, IEEE Trans. Automat. Contr. 55, 1651 (2010) CrossRefMathSciNetGoogle Scholar
  70. 70.
    D. Urbig, J. Lorenz, in Proceedings of the Second Conference of the European Social Simulation Association (2004), ISBN 84-688-7964-9 Google Scholar
  71. 71.
    M.F. Laguna, G. Abramson, D.H. Zanette, Complexity 9, 31 (2004) CrossRefMathSciNetGoogle Scholar
  72. 72.
    M. Porfiri, E.M. Bollt, D.J. Stilwell, Eur. Phys. J. B 57, 481 (2007) CrossRefADSGoogle Scholar
  73. 73.
    K. Malarz, Int. J. Mod. Phys. C 17, 1521 (2006) CrossRefADSGoogle Scholar
  74. 74.
    M.F. Laguna, G. Abramson, D.H. Zanette, Physica A 329, 459 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  75. 75.
    M. Pineda, R. Toral, E. Hernández-García, J. Stat. Mech. P08001 (2009) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Physics, Academy of Sciences of the Czech RepublicPrahaCzech Republic
  2. 2.Center for Theoretical Study, Charles University in Prague, Academy of Sciences of the Czech RepublicPrahaCzech Republic

Personalised recommendations