The European Physical Journal B

, Volume 78, Issue 1, pp 119–125 | Cite as

New model for tracer-diffusion in amorphous solid

Article

Abstract

The tracer-diffusion and structure of polymorphic states of amorphous solid is studied by mean of the statistic relaxation technique and simplex analysis. Several different metastable states of amorphous iron have been constructed based on the model containing 2 × 105 atoms. All models have almost the same pair radial distribution functions, but they differ in the potential energy per atom and the density. We found a large number of vacancy-simplexes which varies according to the relaxation and serves as a diffusion vehicle. New diffusion mechanism for tracer-diffusion is found of which the elementary diffusion process likes a collapse of “microscopic bubble” in amorphous matrix. This includes a jump of diffusing atom and the collective movement of a large number of neighboring atoms. The diffusion constant D determined in accordance with considered diffusion mechanism is in reasonable agreement with experimental data. The decrease in diffusion constant D upon thermal annealing is explained by the reducing vacancy-simplex concentration which is caused by both the local atomic rearrangement and the elimination of excess free volume.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Frank, A. Horner, P. Scharwaechter, H. Kronmiiller, Mater. Sci. Eng. A 179180, 36 (1994) Google Scholar
  2. 2.
    R.S. Averback, MRS Bulletin/November (1991), p. 47 Google Scholar
  3. 3.
    A. van den Beukel, J. Sietsma, Mater. Sci. Eng. A 134, 935 (1991) CrossRefGoogle Scholar
  4. 4.
    Y. Limoge, Acta Metal. Mater. 38, 1733 (1990) CrossRefGoogle Scholar
  5. 5.
    H. Kronmuller, W. Frank, A. Horner, Mater. Sci. Eng. A 133, 410 (1991) CrossRefGoogle Scholar
  6. 6.
    W. Frank, J. Horvath, H. Kronmuller, Mater. Sci. Eng. 97, 415 (1988) CrossRefGoogle Scholar
  7. 7.
    A. Zhu, G.J. Shiflet, S.J. Poon, Acta Mater. 56, 3550 (2008) CrossRefGoogle Scholar
  8. 8.
    J. Horvath, J. Ott, K. Pfahler, W. Ulfert, Mater. Sci. Eng. 97, 409 (1988) CrossRefGoogle Scholar
  9. 9.
    Y. Limoge, Mater. Sci. Eng. A 226228, 228 (1997) Google Scholar
  10. 10.
    Y. Limoge, G. Brebec, Acta Metall. 36, 665 (1988) CrossRefGoogle Scholar
  11. 11.
    J. Laakkonen, R.M. Nieminen, Phys. Rev. B 41, 3978 (1990) CrossRefADSGoogle Scholar
  12. 12.
    P.K. Hung, H.V. Hue, L.T. Vinh, J. Non-Cryst. Solids 352, 3332 (2006) CrossRefADSGoogle Scholar
  13. 13.
    D. Leon, Mater. Sci. Eng. A 226228, 296 (1997) Google Scholar
  14. 14.
    T. Egami, Intermetallics 14, 882 (2006) CrossRefGoogle Scholar
  15. 15.
    P.K. Hung, L.T. Vinh, P.H. Kien, J. Non-Cryst. Solids 356, 1000 (2010) CrossRefADSGoogle Scholar
  16. 16.
    X. Hui, H.Z. Fang, G.L. Chen, S.L. Shang, Y. Wang, J.Y. Qin, Z.K. Liu, Acta Materialia 57, 376 ( 2009) Google Scholar
  17. 17.
    S.P. Pan, J.Y. Qin, T.K. Gu, J. Non-Cryst. Solids 356, 1374 (2010) CrossRefGoogle Scholar
  18. 18.
    J.F. Shackelford, J. Non-Cryst. Solids 204, 205 (1996) CrossRefADSGoogle Scholar
  19. 19.
    J.P. Lauriat, J. Non-Cryst. Solids 55, 77 (1983) CrossRefADSGoogle Scholar
  20. 20.
    R. Bellissent, G. Galli, M.W. Grinstaff, P. Migliardo, K.S. Suslick, Phys. Rev. B 48, 15797 (1993) CrossRefADSGoogle Scholar
  21. 21.
    L.J. Lewis, Phys. Rev. B 39, 12954 (1989) CrossRefADSGoogle Scholar
  22. 22.
    A.V. Evteev, A.T. Kosilov, E.V. Levchenko, O.B. Logachev, Phys. Solid State 48, 815 (2006) CrossRefADSGoogle Scholar
  23. 23.
    L. Koci, A.B. Belonoshko, R. Ahuja, Geophys. J. Int. 168, 890 (2007) CrossRefADSGoogle Scholar
  24. 24.
    Vo Van Hoang, Nguyen Hung Cuong, Physica B 404, 340 (2009) CrossRefADSGoogle Scholar
  25. 25.
    F. Li et al., Intermetallics 17, 98 (2008), doi:10.1016/j.intermet.2008.0CrossRefGoogle Scholar
  26. 26.
    T. Ichikawa, Phys. Status Solidi (a) 19, 707 (1973) CrossRefADSGoogle Scholar
  27. 27.
    Y. Waseda, H.S. Chen, Solid State Commun. 27, 809 (1978) CrossRefADSGoogle Scholar
  28. 28.
    Shu Xiaolin, Wang Chongyu, Physica B 344, 413 (2004) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Computational PhysicsHanoi University of TechnologyHanoiVietnam

Personalised recommendations