Advertisement

The European Physical Journal B

, Volume 78, Issue 1, pp 87–93 | Cite as

First principles calculations of the relaxed structural and electronic properties of Cu nanobelts

  • F.-L. Zheng
  • Y. Zhang
  • J.-M. ZhangEmail author
  • K.-W. Xu
Article
  • 81 Downloads

Abstract

Calculations have been performed for the relaxed structural and electronic properties of Cu nanobelts with the cross-section 3×5, 3×7, 3×9 and 3×11 atomic layers, using the first-principles projector-augmented wave (PAW) potential within the density functional theory (DFT) framework. For all four size Cu nanobelts, most atoms relax inward, and the farther an atom is from the center of the nanobelt, the larger is the amount of inward relaxation and the smaller the total electronic charge. Compared with the (001) plane of Cu bulk crystal, a metallic (delocalized) bonding character obviously appears along the surface atoms as well as along the surface atoms and their first nearest neighbor atoms. The decrease in the coordination number and thus the decrease in restrictions for atoms distant from the center of the nanobelt lead most electrons to range in the higher energy region of the occupancy state.

Keywords

Surface Atom Bulk Crystal Neighbor Atom Initial Distance Occupancy State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.P. Zheng, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001) CrossRefADSGoogle Scholar
  2. 2.
    Z.L. Wang, Nanowires and Nanobelts: Materials, Properties and Device, Nanowires and Nanobelts of Functional Materials (New York, Kluwer Academic Publisher, 2003) Google Scholar
  3. 3.
    H.S. Bhatti, A. Gupta, N.K. Verma, S. Kumar, J. Mater. Sci. Mater. Electron. 17, 281 (2006) CrossRefGoogle Scholar
  4. 4.
    A. Kolmakov, Y.X. Zhang, G.S. Cheng, M. Moskovis, Adv. Mater. 15, 997 (2003) CrossRefGoogle Scholar
  5. 5.
    Y. Chen, C. Zhu, M. Cao, T. Wang, Nanotechnology 18, 285502 (2007) CrossRefGoogle Scholar
  6. 6.
    H. Liu, H. Cui, F. Han, X. Li, J. Wang, Cryst. Growth. Des. 5, 1711 (2005) CrossRefGoogle Scholar
  7. 7.
    X. Li, Q. Li, Z. Xia, L. Wang, W. Yan, J. Wang, Cryst. Growth. Des. 6, 2193 (2006) CrossRefGoogle Scholar
  8. 8.
    R. Rao, H. Chandrasekaran, S. Gubbala, M.K. Sunkara, C. Doraio, S. Jin, A.M. Rao, J. Electron. Mater. 35, 941 (2006) CrossRefADSGoogle Scholar
  9. 9.
    K. Balakrishnan, A. Datar, R. Oitker, H. Chen, J. Zuo, L. Zang, J. Am. Chem. Soc. 34, 10496 (2005) CrossRefGoogle Scholar
  10. 10.
    L.H. Bao, C. Li, Y. Tian, J.F. Tian, C. Hui, X.J. Wang, C.M. Shen, H.J. Gao, Chin. Phys. B 17, 4247 (2008) CrossRefADSGoogle Scholar
  11. 11.
    G.Y. Jing, H. Ji, W.Y. Yang, J. Xu, D.P. Yu, Appl. Phys. A 82, 475 (2006) CrossRefADSGoogle Scholar
  12. 12.
    P.M.F.J. Costa, D. Golberg, G.Z. Shen, M. Mitome, Y. Bando, J. Mater. Sci. 43, 1460 (2008) CrossRefADSGoogle Scholar
  13. 13.
    Y.X. Gu, F.F. Jian, J. Sol-Gel Sci. Technol. 46, 161 (2008) CrossRefGoogle Scholar
  14. 14.
    J. Opitz, P. Zahn, I. Mertig, Phys. Rev. B 66, 245417 (2002) CrossRefADSGoogle Scholar
  15. 15.
    Y.J. Jin, J.B. Lin, Jae Il Lee, Chin. Phys. 16, 0506 (2007) CrossRefADSGoogle Scholar
  16. 16.
    C.K. Yang, J.J. Zhao, J.P. Lu, Phys. Rev. Lett. 90, 257203 (2003) CrossRefADSGoogle Scholar
  17. 17.
    W. Guo, Y.B. Hu, X.Y. Zhang, S.X. Du, H.J. Guo, Chin. Phys. B 18, 2502 (2009) CrossRefADSGoogle Scholar
  18. 18.
    C.J. Park, Y.H. Kim, K.J. Chang, Phys. Rev. B 60, 10656 (1999) CrossRefADSGoogle Scholar
  19. 19.
    J.X. Cao, X.H. Yan, Y. Xiao, J.W. Ding, Chin. Phys. 12, 1440 (2003) CrossRefADSGoogle Scholar
  20. 20.
    I. Takanori, N. Kazume, B. Mamoru, H. Masayuki, Surf. Sci. 514, 222 (2002) CrossRefGoogle Scholar
  21. 21.
    M.J. Chen, Y.C. Liang, H.Z. Li, D. Li, Chin. Phys. 15, 2676 (2006) CrossRefADSGoogle Scholar
  22. 22.
    K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996) CrossRefADSGoogle Scholar
  23. 23.
    Y. Miyamoto, K. Nakada, M. Fujita, Phys. Rev. B 59, 9858 (1999) CrossRefADSGoogle Scholar
  24. 24.
    M. Ezawa, Phys. Rev. B 73, 0454321 (2006) CrossRefGoogle Scholar
  25. 25.
    A.J. Du, S.C. Smith, G.Q. Lu, Chem. Phys. Lett. 447, 181 (2007) CrossRefADSGoogle Scholar
  26. 26.
    L. Sun, Q.X. Li, H. Ren, H.B. Su, Q.W. Shi, J.L. Yang, J. Chem. Phys. 129, 074704 (2008) CrossRefADSGoogle Scholar
  27. 27.
    T.K. Huang, T.H. Cheng, M.Y. Yen, W.H. Hsiao, L.S. Wang, F.R. Chen, J.J. Kai, C.Y. Lee, H.T. Chiu, Langmuir 23, 5722 (2007) CrossRefGoogle Scholar
  28. 28.
    M. Shen, H.L. Wei, J. Wang, Z.L. Liu, Chin. Phys. Lett. 23, 2721 (2006) CrossRefADSGoogle Scholar
  29. 29.
    B.Z. Li, T.D. Sullivan, T.C. Lee, B. Dinesh, Microelectron. Reliab. 44, 365 (2004) CrossRefGoogle Scholar
  30. 30.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993) CrossRefADSGoogle Scholar
  31. 31.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994) CrossRefADSGoogle Scholar
  32. 32.
    G. Kresse, J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996) CrossRefGoogle Scholar
  33. 33.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) CrossRefADSGoogle Scholar
  34. 34.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) CrossRefADSGoogle Scholar
  35. 35.
    D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980) CrossRefADSGoogle Scholar
  36. 36.
    R. Hafner, D. Spisák, Phys. Rev. B 65, 184432 (2002) CrossRefADSGoogle Scholar
  37. 37.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  38. 38.
    H.L. Davis, J.R. Noonan, J. Vac, Sci. Technol. 20, 842 (1982) ADSGoogle Scholar
  39. 39.
    H.L. Davis, J.R. Noonan, Surf. Sci. 126, 245 (1983) CrossRefADSGoogle Scholar
  40. 40.
    D.M. Lind et al., Phys. Rev. B 35, 9037 (1987) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.College of Physics and Information Technology, Shaanxi Normal UniversityXianP.R. China
  2. 2.Laboratoire SPMS, École Centrale Paris, CNRS-UMR 8580Châtenay-Malabry CedexFrance
  3. 3.State Key Laboratory for Mechanical Behavior of Materials, Xian Jiaotong UniversityShaanxiP.R. China

Personalised recommendations