Advertisement

The European Physical Journal B

, Volume 77, Issue 3, pp 419–427 | Cite as

Quantum-like criticality for a classical transverse Ising model in 4–ε dimensions

  • A. Caramico D’Auria
  • L. De Cesare
  • M. T. MercaldoEmail author
  • I. Rabuffo
Mesoscopic and Nanoscale Systems

Abstract.

We investigate the low-temperature critical properties of a classical Ising model in a transverse field. This is performed by applying the conventional Wilson renormalization group to the related Ginzburg-Landau functional emerging from a Hubbard-Stratonovich transformation. Results in 4–ε dimensions provide a low temperature critical scenario very similar to that found for the quantum counterpart. Remarkably, we find that the discrimination between the two cases essentially lies on the different values of the shift exponent which characterizes the behavior of the phase boundary close to the zero-temperature critical point. This feature suggests that, decreasing the temperature, the observation of different renormalized critical exponents may signal activation of genuine quantum critical fluctuations.

Keywords

Critical Exponent Critical Line Quantum Critical Point Quantum Criticality Quantum Counterpart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999) Google Scholar
  2. 2.
    M.A. Continentino, Quantum Scaling in Many-Body Systems (World Scientific, Singapore, 2001) Google Scholar
  3. 3.
    G.R. Stewart, Rev. Mod. Phys. 73, 797 (2001) CrossRefADSGoogle Scholar
  4. 4.
    H.V. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007) CrossRefADSGoogle Scholar
  5. 5.
    P. Gegenwart, Q. Si, F. Steglich, Nature Phys. 4, 186 (2008) CrossRefADSGoogle Scholar
  6. 6.
    A. Kopp, S. Chakravarty, Nature Phys. 1, 53 (2005) CrossRefADSGoogle Scholar
  7. 7.
    S. Roy, A.-M.S. Tremblay, Europhys. Lett. 84, 37013 (2008) CrossRefADSGoogle Scholar
  8. 8.
    J. Kroha, M. Klein, A. Nuber, F. Reinert, G. Stockert, H.V. Löhneysen, J. Phys.: Condens. Matter 22, 164203 (2010) CrossRefADSGoogle Scholar
  9. 9.
    J. Hertz, Phys. Rev. B 14, 1165 (1976) CrossRefADSGoogle Scholar
  10. 10.
    A.J. Millis, Phys. Rev. B 48, 7183 (1993) CrossRefADSGoogle Scholar
  11. 11.
    T. Moriya, Spin Fluctuation in Itinerant Electron Magnetism (Springer, Berlin, 1985) Google Scholar
  12. 12.
    T. Moriya, T. Takimoto, J. Phys. Soc. Jpn 64, 960 (1995) CrossRefADSGoogle Scholar
  13. 13.
    S. Takashima, M. Nohara, H. Ueda, N. Takeshita, C. Terakura, F. Sakai, H. Takagi, J. Phys. Soc. Jpn 76, 043704 (2007) CrossRefADSGoogle Scholar
  14. 14.
    R.A. Borzi, S.A. Grigera, J. Ferrel, R.S. Perry, S.J.S. Lister, S.L. Lee, D.A. Tennant, Y. Maeno, A.P. Mackenzie, Science 315, 214 (2007) CrossRefADSGoogle Scholar
  15. 15.
    A.J. Schofield, arXiv 1001.4279 Google Scholar
  16. 16.
    T. Misawa, Y. Yamaji, M. Imada, J. Phys. Soc. Jpn 78, 084707 (2009), and references therein CrossRefADSGoogle Scholar
  17. 17.
    S. Kirchner, L. Zhu, Q. Si, D. Natelson, PNAS 102, 18824 (2005) CrossRefADSGoogle Scholar
  18. 18.
    P. Coleman, A.J. Schofield, Nature 433, 226 (2005) CrossRefADSGoogle Scholar
  19. 19.
    C. Castelnovo, C. Chamon, C. Mudey, P. Pujol, Phys. Rev. B 73, 144411 (2006) CrossRefADSGoogle Scholar
  20. 20.
    M.M. Parish, F.M. Marchetti, A. Lamacraft, B.D. Simons, Nature Phys. 3, 124 (2007) CrossRefADSGoogle Scholar
  21. 21.
    A. Cuccoli, A. Taiti, R. Vaia, P. Verrucchi, Phys. Rev. B 76, 064405 (2007) CrossRefADSGoogle Scholar
  22. 22.
    P. Pfeuty, Ann. Phys. (NY) 57, 79 (1970) CrossRefADSGoogle Scholar
  23. 23.
    P. Pfeuty, J. Phys. C: Solid State Phys. 9, 3993 (1976) CrossRefADSGoogle Scholar
  24. 24.
    S. Chakravarty, B.I. Halperin, D.R. Nelson, Phys. Rev. B 39, 2344 (1989) CrossRefADSGoogle Scholar
  25. 25.
    B.K. Chakrabarti, A. Dutta, P. Sen, Quantum Ising Phases and Transitions in Transverse Ising Model (Springer, Berlin, 1996), and references therein Google Scholar
  26. 26.
    B.K. Chakrabarti, A. Das, in Quantum Annealing and related Optimization Methods, edited by A. Das, B.K. Chakrabarti, LNP 679 (Springer, Heidelberg, 2005) Google Scholar
  27. 27.
    A.K. Chandra, J. Inone, B.K. Chakrabarti, Phys. Rev. E 81, 021101 (2010) CrossRefADSGoogle Scholar
  28. 28.
    P. Prelovšek, I. Sega, J. Phys. C: Solid State Phys. 11, 2103 (1978) CrossRefADSGoogle Scholar
  29. 29.
    P. Prelovšek, I. Sega, Phys. Rev. B 17, 4416 (1978) CrossRefADSGoogle Scholar
  30. 30.
    S. Homma, S. Takeno, J. Phys. Soc. Jpn 49, 1671 (1980) CrossRefADSGoogle Scholar
  31. 31.
    S. Homma, S. Takeno, J. Phys. Soc. Jpn 50, 2818 (1981) CrossRefADSGoogle Scholar
  32. 32.
    R. Pirk, B. Tadić, R. Blinc, Z. Phys. B 61, 69 (1985) CrossRefADSGoogle Scholar
  33. 33.
    R. Pirk, P. Prelovšek, B. Tadić, Solid State Comm. 64, 137 (1987) CrossRefADSGoogle Scholar
  34. 34.
    K. Walasek, K. Lukierska-Walasek, L. De Cesare, I. Rabuffo, J. Phys. A: Math. Gen. 31, 5733 (1998) zbMATHCrossRefADSGoogle Scholar
  35. 35.
    H.-J. Mikeska, S. Miyashita, Z. Phys. B 101, 275 (1996) CrossRefADSGoogle Scholar
  36. 36.
    A. Johann, Eur. Phys. J. B 25, 53 (2002) ADSGoogle Scholar
  37. 37.
    L. De Cesare, A. Caramico D'Auria, I. Rabuffo, M.T. Mercaldo, Eur. Phys. J. B 73, 327 (2010) CrossRefADSGoogle Scholar
  38. 38.
    M.T. Mercaldo, L. De Cesare, I. Rabuffo, A. Caramico D'Auria, Phys. Rev. B 75, 014105 (2007) CrossRefADSGoogle Scholar
  39. 39.
    M.T. Mercaldo, L. De Cesare, I. Rabuffo, A. Caramico D'Auria, Phys. Rev. B 77, E029901 (2008) CrossRefADSGoogle Scholar
  40. 40.
    J. Hubbard, Phys. Rev. Lett. 3, 77 (1959) CrossRefADSGoogle Scholar
  41. 41.
    R.L. Stratonovich, Soviet Phys. Dok. 2, 416 (1958) ADSGoogle Scholar
  42. 42.
    S.-K. Ma, Modern Theory of Critical Phenomena (W.A. Benjamin, Inc. London, UK, 1976) Google Scholar
  43. 43.
    P. Pfeuty, G. Toulouse, Introduction to the Renormalization Group and to Critical Phenomena (Wiley, New York, 1977) Google Scholar
  44. 44.
    N.D. Goldenfeld, Lectures on Phase Transitions and the Renormalisation Group (Addison-Wesley, 1992) Google Scholar
  45. 45.
    J. Rudnick, D.R. Nelson, Phys. Rev. B 13, 2208 (1976) CrossRefADSGoogle Scholar
  46. 46.
    W.A.C. Erkelens, L.P. Regnault, J. Rossat-Mignod, J.E. Moore, R.A. Butera, L.J. De Jongh, Europhys. Lett. 1, 37 (1986) CrossRefADSGoogle Scholar
  47. 47.
    I.D. Lawrie, J. Phys. C 11, 1123 (1978) CrossRefADSGoogle Scholar
  48. 48.
    P.R. Gerber , J. Phys. C 11, 5005 (1978) CrossRefADSGoogle Scholar
  49. 49.
    L. De Cesare, Nuovo Cimento D 1, 289 (1982) CrossRefADSGoogle Scholar
  50. 50.
    P. Pfeuty, D. Jansow, M.E. Fisher, Phys. Rev. B 10, 2088 (1974) CrossRefADSGoogle Scholar
  51. 51.
    M. Takahashi, Phys. Rev. B 36, 3791 (1987) CrossRefADSGoogle Scholar
  52. 52.
    E.H. Lieb, Commun. Math. Phys. 31, 327 (1973) zbMATHCrossRefMathSciNetADSGoogle Scholar
  53. 53.
    M. Biskup, L. Chayes, S. Starr, Commun. Math. Phys. 269, 611 (2007) zbMATHCrossRefMathSciNetADSGoogle Scholar
  54. 54.
    A. Honecher, M.E. Zhitomirsky, J. Phys. : Conf. Series 145, 012082 (2009) CrossRefADSGoogle Scholar
  55. 55.
    L. Engelhardt, M. Luban, Phys. Rev. B 73, 054430 (2006) CrossRefADSGoogle Scholar
  56. 56.
    R. Yu, O. Nohadani, S. Haas, T. Roscilde (2010) arXiv:1006.2474 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A. Caramico D’Auria
    • 1
  • L. De Cesare
    • 2
  • M. T. Mercaldo
    • 2
    Email author
  • I. Rabuffo
    • 2
  1. 1.Dipartimento di Scienze FisicheUniversità di Napoli Federico II and CNR - SPINNapoliItaly
  2. 2.Dipartimento di Fisica “E.R. Caianiello ”Università di Salerno and CNISMFisciano (Salerno)Italy

Personalised recommendations