Advertisement

The European Physical Journal B

, Volume 77, Issue 1, pp 83–86 | Cite as

Study of lattice dynamics in the CuIr2S4 system

  • L. ZhangEmail author
  • L. S. Ling
  • Z. Qu
  • W. Tong
  • S. Tan
  • Y. H. Zhang
Solid State and Materials

Abstract

The lattice dynamics in the CuIr2S4 system have been investigated through Raman spectroscopy and the induced-pressure effect. Four Raman active modes are observed experimentally. Upon cooling, these Raman spectra undergo changes due to the Peierls-like phase transition. In addition, the substitution of Ag for Cu affects the amplitude of the Raman spectra while keeping their wave number unchanged. Furthermore, the positive and negative pressure effects are induced by shrinking and expanding the lattice. It is suggested that the pressure effect is an effective proof of the orbital-induced Peierls state mechanism.

Keywords

Raman Spectrum Hydrostatic Pressure Negative Pressure Vibration Mode Lattice Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Nagata, T. Hagino, Y. Seki, T. Bitoh, Physica B 194–196, 1077 (1994) CrossRefGoogle Scholar
  2. 2.
    P.G. Radaelli, Y. Horibe, M.J. Gutmann, H. Ishibashi, C.H. Chen, R.M. Ibberson, Y. Koyama, Y.S. Hor, V. Kiryukhin, S.W. Cheong, Nature 416, 155 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    D.I. Khomskii, T. Mizokawa, Phys. Rev. Lett. 94, 156402 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    N. Kijima, H. Yashiro, J. Awaka, J. Akimoto, S. Nagata, J. Alloys Compd. 480, 120 (2009) CrossRefGoogle Scholar
  5. 5.
    M. Koshimizu, H. Tsukahara, K. Asai, Nucl. Instrum. Methods Phys. Res. B 267, 1125 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    S. Sarkar, M. De Raychaudhury, T. Saha-Dasgupta, Phys. Rev B 79, 113104 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    I. Matsubara, S. Ebihara, T. Mishina, J. Nakahara, Phys. Rev B 79, 054110 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    K. Takubo, T. Mizokawa, N. Matsumoto, S. Nagata, Phys. Rev B 78, 245117 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    H.J. Noh, E.J. Cho, H.D. Kim, J.Y. Kim, C.H. Min, B.G. Park, S.W. Cheong, Phys. Rev B 76, 233106 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    T. Furubayashi, T. Matsumoto, T. Hagino, S. Nagata, J. Phys. Soc. Jpn 63, 3333 (1994) ADSCrossRefGoogle Scholar
  11. 11.
    H. Ishibashi, T. Sakai, K. Nakahigashi, J. Magn. Magn. Mater. 226–230, 233 (2001) CrossRefGoogle Scholar
  12. 12.
    J. Matsuno, T. Mizokawa, A. Fujimori, D.A. Zatsepin, V.R. Galakhov, E.Z. Kurmaev, Y. Kato, S. Nagata, Phys. Rev. B 55, R15979 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    K. Kumagai, S. Tsuji, T. Hagino, S. Nagata, in Spectroscopy of Mott Insulators and Correlated Metals, edited by A. Fujimori, Y. Tokura (Springer-Verlag, Berlin, 1995), p. 255 Google Scholar
  14. 14.
    T. Oda, M. Shirai, N. Suzuki, K. Motizuki, J. Phys.: Condens. Matter 7, 4433 (1995) ADSCrossRefGoogle Scholar
  15. 15.
    P.G. Radealli, New J. Phys. 7, 53 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    M. Croft, W. Caliebe, H. Woo, T.A. Tyson, D. Sills, Y.S. Hor, S.W. Cheong, V. Kiryukhin, S.J. Oh, Phys. Rev. B 67, 201102 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    G. Oomi, T. Kagayama, I. Yoshida, T. Hagino, S. Nagata, J. Mag. Mag. Mater. 140–144, 157 (1995) CrossRefGoogle Scholar
  18. 18.
    A. Garg, V. Vijayakumar, B. Godwal, A. Choudhury, H. Hochheimer, Solid State Commun. 142, 369 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    J. Tang, T. Matsumoto, T. Furubayashi, T. Kosaka, S. Nagata, Y. Kato, J. Mag. Mag. Mater. 177–181, 1363 (1998) CrossRefGoogle Scholar
  20. 20.
    H. Kang, P. Mandal, I.V. Medvedeva, J. Liebe, G.H. Rao, K. Barner, A. Poddar, E. Gmelin, J. Appl. Phys. 83, 1 (1998) CrossRefGoogle Scholar
  21. 21.
    L. Zhang, L.S. Ling, S. Tan, L. Pi, Y.H. Zhang, J. Phys.: Condens. Matter 20, 255205 (2008) CrossRefGoogle Scholar
  22. 22.
    H.D. Lutz, Z. Naturforsch. 24a, 1417 (1969) ADSGoogle Scholar
  23. 23.
    H.D. Lutz, J. Himmrich, H. Haeuseler, Z. Naturforsch. A 45, 893 (1990) Google Scholar
  24. 24.
    B. Ammundsen, G.R. Bumd, M.S. Islam, H. Kanoh, J. Roziere, J. Phys. Chem. B 103, 5175 (1999) CrossRefGoogle Scholar
  25. 25.
    J. Zwinscher, H.D. Lutz, J. Alloys Compd. 219, 103 (1995) CrossRefGoogle Scholar
  26. 26.
    J. Zwinscher, H.D. Lutz, J. Solid State Chem. 118, 43 (1995) ADSCrossRefGoogle Scholar
  27. 27.
    Z.V. Popovic, G. De Marzi, M.J. Konstantinovic, A. Cantarero, Z. Dohcevic-Mitrovic, M. Isobe, Y. Ueda, Phys. Rev. B 68, 224302 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    H.D. Lutz, W. Becker, B. Muller, M. Jung, J. Raman Spectrosc. 22, 99 (1989) ADSCrossRefGoogle Scholar
  29. 29.
    H.D. Lutz, G. Waschenbach, G. Kliche, H. Haeuseler, J. Solid. State Chem. 48, 196 (1983) ADSCrossRefGoogle Scholar
  30. 30.
    J. Himmrich, Master Thesis, Univ. Siegen, Anorganische Chemie I, Siegen, Germany, 1990 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • L. Zhang
    • 1
    Email author
  • L. S. Ling
    • 1
  • Z. Qu
    • 1
  • W. Tong
    • 1
  • S. Tan
    • 2
  • Y. H. Zhang
    • 1
    • 2
  1. 1.High Magnetic Field Laboratory, Chinese Academy of SciencesHefeiP.R. China
  2. 2.Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations