The European Physical Journal B

, Volume 76, Issue 1, pp 87–97 | Cite as

Unravelling the size distribution of social groups with information theory in complex networks

Interdisciplinary Physics

Abstract

The minimization of Fisher’s information (MFI) approach of Frieden et al. [Phys. Rev. E 60, 48 (1999)] is applied to the study of size distributions in social groups on the basis of a recently established analogy between scale invariant systems and classical gases [Phys. A 389, 490 (2010)]. Going beyond the ideal gas scenario is seen to be tantamount to simulating the interactions taking place, for a competitive cluster growth process, in a scale-free ideal network – a non-correlated network with a connection-degree’s distribution that mimics the scale-free ideal gas density distribution. We use a scaling rule that allows one to classify the final cluster-size distributions using only one parameter that we call the competitiveness, which can be seen as a measure of the strength of the interactions. We find that both empirical city-size distributions and electoral results can be thus reproduced and classified according to this competitiveness-parameter, that also allow us to infer the maximum number of stable social relationships that one person can maintain, known as the Dunbar number, together with its standard deviation. We discuss the importance of this number in connection with the empirical phenomenon known as “six-degrees of separation”. Finally, we show that scaled city-size distributions of large countries follow, in general, the same universal distribution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Batty, Science 319, 769 (2008) CrossRefADSGoogle Scholar
  2. 2.
    A. Blank, S. Solomon, Physica A 287, 279 (2000) CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    X. Gabaix, Y.M. Ioannides, Handbook of Regional and Urban Economics (North-Holland, Amsterdam, 2004), Vol. 4 Google Scholar
  4. 4.
    W.J. Reed, J. Reg. Sci. 42, 1 (2002) CrossRefGoogle Scholar
  5. 5.
    M.E.J. Newman, Contemp. Phys. 46, 323 (2005) CrossRefADSGoogle Scholar
  6. 6.
    V. Pareto, Cours d`Economie Politique (Droz, Geneva, 1896) Google Scholar
  7. 7.
    G.K. Zipf, Human Behavior and the Principle of Least Effort (Addison-Wesley, Cambridge, MA, 1949) Google Scholar
  8. 8.
    L.C. Malacarne, R.S. Mendes, E.K. Lenzi, Phys. Rev. E 65, 017106 (2001) CrossRefADSGoogle Scholar
  9. 9.
    M. Marsili, Y.-C. Zhang, Phys. Rev. Lett. 80, 2741 (1998) CrossRefADSGoogle Scholar
  10. 10.
    R.L. Axtell, Science 293, 1818 (2001) CrossRefADSGoogle Scholar
  11. 11.
    K. Paech, W. Bauer, S. Pratt, Phys. Rev. C 76, 054603 (2007) CrossRefADSGoogle Scholar
  12. 12.
    X. Campi, H. Krivine, Phys. Rev. C 72, 057602 (2005) CrossRefADSGoogle Scholar
  13. 13.
    Y.G. Ma et al., Phys. Rev. C 71, 054606 (2005) CrossRefADSGoogle Scholar
  14. 14.
    C. Furusawa, K. Kaneko, Phys. Rev. Lett. 90, 088102 (2003) CrossRefADSGoogle Scholar
  15. 15.
    I. Kanter, D.A. Kessler, Phys. Rev. Lett. 74, 4559 (1995) CrossRefADSGoogle Scholar
  16. 16.
    M.E.J. Newman, Phys. Rev. E 64, 016131 (2001) CrossRefADSGoogle Scholar
  17. 17.
    A. Hernando, D. Puigdomènech, D. Villuendas, C. Vesperinas, A. Plastino, Phys. Lett. A 374, 18 (2009) CrossRefADSGoogle Scholar
  18. 18.
    R. Albert, A.L. Barabási, Rev. Mod. Phys. 2074, 2047 (2002) Google Scholar
  19. 19.
    M.E.J. Newman, A.L. Barabasi, D.J. Watts, The Structure and Dynamics of Complex Networks (Princeton University Press, Princeton, 2006) Google Scholar
  20. 20.
    T. Maillart, D. Sornette, S. Spaeth, G. von Krogh, Phys. Rev. Lett. 101, 218701 (2008) CrossRefADSGoogle Scholar
  21. 21.
    R.N. Costa Filho, M.P. Almeida, J.S. Andrade, J.E. Moreira, Phys. Rev. E 60, 1067 (1999) CrossRefADSGoogle Scholar
  22. 22.
    A. Hernando, C. Vesperinas, A. Plastino, Phys. A 389, 490 (2010) CrossRefGoogle Scholar
  23. 23.
    R. Frieden, A. Plastino, A.R. Plastino, B.H. Soffer, Phys. Rev. E 60, 48 (1999) CrossRefMathSciNetADSGoogle Scholar
  24. 24.
  25. 25.
    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009) CrossRefADSGoogle Scholar
  26. 26.
    S. Fortunato, C. Castellano, Phys. Rev. Lett. 99, 138701 (2007) CrossRefADSGoogle Scholar
  27. 27.
    M. Batty, Cities and Complexity: Understanding Cities Through Cellular Automata, Agent-Based Models, and Fractals (MIT Press, Cambridge, MA, 2005) Google Scholar
  28. 28.
    H. Gould, J. Tobochnik, An Introduction to Computer Simulation Methods: Applications to Physical Systems, 2nd edn. (Addison-Wesley, 1996) Google Scholar
  29. 29.
    W.J. Reed, B.D. Hughes, Phys. Rev. E. 66, 067103 (2002) CrossRefADSGoogle Scholar
  30. 30.
    R. Albert, H. Jeong, A.L. Barabási, Nature 401, 130 (1999) CrossRefADSGoogle Scholar
  31. 31.
    R. Guimerà, R.L. Danon, A. Díaz-Guilera, F. Giralt, A. Arenas, Phys. Rev. E 68, 065103(R) (2003) CrossRefADSGoogle Scholar
  32. 32.
    J. Leskovec, E. Horvitz (2008), e-print arXiv:0803.0939v1 Google Scholar
  33. 33.
    K. Christensen, H. Flyvbjerg, Z. Olami, Phys. Rev. Lett. 71, 2737 (1993) CrossRefADSGoogle Scholar
  34. 34.
    A. Mezhlumian, S.A. Molchanov, J. Stat. Phys. 71, 799 (1993) MATHCrossRefMathSciNetADSGoogle Scholar
  35. 35.
    S. Zapperi, K.B. Lauritsen, H.E. Stanley, Phys. Rev. Lett. 75, 4071 (1995) CrossRefADSGoogle Scholar
  36. 36.
    A.A. Moreira, D.R. Paula, R.N.C. Filho, J.S. Andrade, Phys. Rev. E 73, 065101(R) (2006) CrossRefADSGoogle Scholar
  37. 37.
    M. Molloy, B. Reed, Random Struct. Algorithms 6, 161 (1995) MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. E 64, 026118 (2001) CrossRefADSGoogle Scholar
  39. 39.
    B.R. Frieden, B.H. Soffer, Phys. Rev. E 52, 2274 (1995) CrossRefADSGoogle Scholar
  40. 40.
    B.R. Frieden, Physics from Fisher Information, 2nd edn. (Cambridge Univ. Press, Cambridge, 1998) Google Scholar
  41. 41.
    B.R. Frieden, Science from Fisher Information (Cambridge Univ. Press, Cambridge, 2004) Google Scholar
  42. 42.
    M. Batty, Nature 444, 592 (2006) CrossRefADSGoogle Scholar
  43. 43.
    R. Toral, C.J. Tessone, Commun. Comput. Phys. 2, 177 (2007) MathSciNetGoogle Scholar
  44. 44.
    A. Clauset, C.R. Shalizi, M.E.J. Newman (2009), e-print arXiv:0706.1062v2 Google Scholar
  45. 45.
    National Statistics Institute of Spain website, Government of Spain, (www.ine.es) Google Scholar
  46. 46.
    L. Valitova, V. Tambovtsev, Regional policy priorities in Russia: empirical evidence, RECEP Reports (2005), Vol. 5, p. 9 Google Scholar
  47. 47.
    M. Gladwell, The Tipping Point – How Little Things Make a Big Difference (Little, Brown and Company, 2000) Google Scholar
  48. 48.
    R.I.M. Dunbar, J. Hum. Evo. 20, 469 (1992) CrossRefGoogle Scholar
  49. 49.
    R.I.M. Dunbar, Beh. Brain Sci. 16, 681 (1993) CrossRefGoogle Scholar
  50. 50.
    Census bureau website, Government of USA, www.census.gov Google Scholar
  51. 51.
    J. Travers, S. Milgram, Sociometry 32, 425 (1969) CrossRefGoogle Scholar
  52. 52.
    D.J. Watts, Six Degrees: The Science of a Connected Age (Norton, New York, 2003) Google Scholar
  53. 53.
    D.J. Watts, Small Worlds: The Dynamics of Networks Between Order and Randomness (Princeton University Press, Princeton, 1999) Google Scholar
  54. 54.
    P.S. Dodds, R. Muhamad, D.J. Watts, Science 301, 827 (2003) CrossRefADSGoogle Scholar
  55. 55.
    Electoral Commission, Government of UK, http://www.electoralcommission.org.uk
  56. 56.
    National Archives and Records Administration, Government of USA. www.archives.gov Google Scholar
  57. 57.
    Ministero dell’Interno – Elezioni Politiche, Government of Italy. politiche.interno.it Google Scholar
  58. 58.
    Ministerio del Interior, Elecciones, Government of Spain. www.elecciones.mir.es Google Scholar
  59. 59.
    UK Statistics Authority, www.statistics.gov.uk Google Scholar
  60. 60.
    Wolfram Mathematica CityData Source, based on a wide range of sources. www.wolfram.com Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Departament ECMFacultat de Física, Universitat de BarcelonaBarcelonaSpain
  2. 2.Departament FFNFacultat de Física, Universitat de BarcelonaBarcelonaSpain
  3. 3.Sogeti España, WTCAP 2, Plaça de la Pau s/nCornellàSpain
  4. 4.National University La PlataLa PlataArgentina

Personalised recommendations