The European Physical Journal B

, Volume 75, Issue 4, pp 431–437 | Cite as

Magnetism of small V clusters embedded in a Cu fcc matrix: an ab initio study

  • R. E. Félix-Medina
  • M. A. Leyva-Lucero
  • R. A. Guirado-López
  • S. Meza-AguilarEmail author
Solid State and Materials


We present extensive first principles density functional theory (DFT) calculations dedicated to analyze the magnetic and electronic properties of small V n clusters (n = 1, 2, 3, 4, 5, 6) embedded in a Cu fcc matrix. We consider different cluster structures such as: (i) a single V impurity, (ii) several V2 dimers having different interatomic distance and varying local atomic environment, (iii) V3 and (iv) V4 clusters for which we assume compact as well as 2- and 1-dimensional atomic configurations and finally, in the case of the (v) V5 and (vi) V6 structures we consider a square pyramid and a square bipyramid together with linear arrays, respectively. In all cases, the V atoms are embedded as substitutional impurities in the Cu network. In general, and as in the free standing case, we have found that the V clusters tend to form compact atomic arrays within the cooper matrix. Our calculated non spin-polarized density of states at the V sites shows a complex peaked structure around the Fermi level that strongly changes as a function of both the interatomic distance and local atomic environment, a result that anticipates a non trivial magnetic behavior. In fact, our DFT calculations reveal, in each one of our clusters systems, the existence of different magnetic solutions (ferromagnetic, ferrimagnetic, and antiferromagnetic) with very small energy differences among them, a result that could lead to the existence of complex finite-temperature magnetic properties. Finally, we compare our results with recent experimental measurements.


Interatomic Distance Versus Dimer Versus Atom Versus Cluster Substitutional Impurity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Akoh, A. Tasaki J. Appl. Phys. 49, 1410 (1978) ADSGoogle Scholar
  2. 2.
    I. Turek. S. Blügel, J. Kudrnovsky, Phys. Rev. B 57, R11065 (1998) CrossRefADSGoogle Scholar
  3. 3.
    T. Bryk, D.M. Bylander, L. Kleinman, Phys. Rev. B 61, R3780 (2000) CrossRefADSGoogle Scholar
  4. 4.
    R. Robles, J. Izquierdo, A. Vega, L.C. Balbas, Phys. Rev. B 63, 172406 (2001) CrossRefADSGoogle Scholar
  5. 5.
    S. Bouarab, H. Nait-Laziz, C. Demangeat, A. Mokrani, H. Dreyssé, Phys. Rev. B 46, 889 (1992) CrossRefADSGoogle Scholar
  6. 6.
    V. Cocula, E.A. Carter, Phys. Rev. B 69, 052404 (2004) CrossRefADSGoogle Scholar
  7. 7.
    D. Lacina, J. Yang, J.L. Erskine, Phys. Rev. B 75, 195423 (2007) CrossRefADSGoogle Scholar
  8. 8.
    R.E. Félix-Medina, M.A. Leyva-Lucero, S. Meza-Aguilar, J. Appl. Phys. 105, 07C301 (2009) Google Scholar
  9. 9.
    A. Bergman, L. Nordström, A. Burlamaqui-Klautau, Sonia Frota-Pesôa, Olle Eriksson, Phys. Rev. B 75, 224425 (2007) CrossRefADSGoogle Scholar
  10. 10.
    A. Bergman, L. Nordström, A. Burlamaqui-Klautau, S. Frota-Pesôa, O. Ericksson, Surf. Sci. 600, 4838 (2006) CrossRefADSGoogle Scholar
  11. 11.
    S.L. Qiu, R.G. Jordan, A.M. Begley, X. Wang, Y. Liu, M.W. Ruckman, Phys. Rev. B 46, 13004 (1992) CrossRefADSGoogle Scholar
  12. 12.
    K. Sakurai, M. Mori, U. Mizutani, Phys. Rev. B 46, 5711 (1992) CrossRefADSGoogle Scholar
  13. 13.
    Y. Huttel, G. van der Laan, T.K. Johal, N.D. Telling, P. Bencok, Phys. Rev. B 68, 174405 (2003) CrossRefADSGoogle Scholar
  14. 14.
    P. Alvarado, J. Dorantes-Dávila, G.M. Pastor, Phys. Rev. B 58, 12216 (1998) CrossRefADSGoogle Scholar
  15. 15.
    T. Valla, P. Pervan, M. Millun, A.B. Hayden, D.P. Woodruff, Phys. Rev. B 54, 117886 (1996) CrossRefGoogle Scholar
  16. 16.
    F. Tian, F. Jona, P.M. Marcus, Phys. Rev. B 59, 12286 (1999) CrossRefADSGoogle Scholar
  17. 17.
    S.E. Weber, B.K. Rao, P. Jena, V.S. Stepanyuk, W. Hergert, K. Wildberger, R. Zeller, P.H. Dederichs, J. Phys.: Condens. Matter 9, 10739 (1997) CrossRefADSGoogle Scholar
  18. 18.
    I. Galanakis, P.M. Oppeneer, P. Ravindran, L. Nordström, P. James, M. Alouani, H. Dreysse, O. Eriksson, Phys. Rev. B 63, 172405 (2001) CrossRefADSGoogle Scholar
  19. 19.
    Y. Huttel, G. van der Laan, C.M. Teodorescu, P. Bencok, S.S. Dhesi, Phys. Rev. B 67, 052408 (2003) CrossRefADSGoogle Scholar
  20. 20.
    S. Baroni, A. Dal Corso, S. de Girancoli, P. Gianozzi,
  21. 21.
  22. 22.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  23. 23.
    A.A. Ramanathan, J.M. Khalifeh, B.A. Hamad, Surf. Sci. 602, 607 (2008) CrossRefADSGoogle Scholar
  24. 24.
    J.F. Janak, Phys. Rev. B 16, 255 (1977) CrossRefADSGoogle Scholar
  25. 25.
    F. Liu, S.N. Khana, P. Jena, Phys. Rev. B 43, 8179 (1991) CrossRefADSGoogle Scholar
  26. 26.
    S. Blügel, B. Drittler, R. Zeller, P.H. Dederichs, Appl. Phys. A 49, 547 (1989) CrossRefADSGoogle Scholar
  27. 27.
    E.M. Sosa-Hernandez, P.G. Alvarado-Leyva, J.M. Montejano-Carrizales, F. Aguilera-Granja, Rev. Mex. Fis. 50, 30 (2004) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • R. E. Félix-Medina
    • 1
  • M. A. Leyva-Lucero
    • 1
  • R. A. Guirado-López
    • 2
  • S. Meza-Aguilar
    • 1
    Email author
  1. 1.Escuela de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, Blvd. de las Américas y Universitarios, Ciudad UniversitariaCuliacán SinaloaMexico
  2. 2.Instituto de Física, “Manuel Sandoval Vallarta”, Universidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations