Advertisement

The European Physical Journal B

, Volume 73, Issue 3, pp 447–453 | Cite as

On two-dimensionalization of three-dimensional turbulence in shell models

  • S. Chakraborty
  • M. H. Jensen
  • A. Sarkar
Statistical and Nonlinear Physics

Abstract

Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell models we have obtained the following results: (i) progressive steepening of the energy spectrum with increased strength of the rotation, and, (ii) depletion in the energy flux of the forward forward cascade, sometimes leading to an inverse cascade. The presence of extended self-similarity and self-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case.

Keywords

Direct Numerical Simulation Shell Model Longitudinal Velocity Inertial Range Energy Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Cambon, L. Jacquin, J. Fluid Mech. 202, 295 (1989)zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    F. Waleffe, Phys. Fluids A 5, 677 (1993)zbMATHCrossRefADSGoogle Scholar
  3. 3.
    L.M. Smith, J.R. Chasnov, F. Waleffe, Phys. Rev. Lett. 77, 2467 (1996)CrossRefADSGoogle Scholar
  4. 4.
    C.N. Baroud, B.B. Plapp, Z.S. She, H.L. Swinney, Phys. Rev. Lett. 88, 114501 (2002)CrossRefADSGoogle Scholar
  5. 5.
    C. Morize, F. Moisy, M. Rabaud, Phys. Fluids 17, 095105 (2005)CrossRefADSGoogle Scholar
  6. 6.
    C.N. Baroud, B.B. Plapp, H.L. Swinney, Z.S. She, Phys. Fluids 15, 2091 (2003)CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    C. Morize, F. Moisy, Phys. Fluids 18, 065107 (2006)CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Y. Zhou, Phys. Fluids 7, 2092 (1995)zbMATHCrossRefADSGoogle Scholar
  9. 9.
    V.M. Canuto, M.S. Dubovikov, Phys. Rev. Lett. 78, 666 (1997)CrossRefADSGoogle Scholar
  10. 10.
    P.K. Yeung, Y. Zhou, Phys. Fluids 10, 2895 (1998)CrossRefADSGoogle Scholar
  11. 11.
    Y. Hattori, R. Rubinstein, A. Ishizawa, Phys. Rev. E 70, 046311 (2004)CrossRefADSGoogle Scholar
  12. 12.
    M. Reshetnyak, B. Steffen, The shell model approach to the rotating turbulence, arXiv:physics/0311001Google Scholar
  13. 13.
    W.C. Muller, M. Thiele, Europhys. Lett. 77, 34003 (2007)CrossRefADSGoogle Scholar
  14. 14.
    X. Yang, J.A. Domaradzki, Phys. Fluids 16, 4088 (2004)CrossRefADSGoogle Scholar
  15. 15.
    F. Bellet, F.S. Godeferd, J.F. Scott, C. Cambon, J. Fluid Mech. 562, 83 (2006)zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    S. Galtier, Phys. Rev. E 68, R015301 (2003)CrossRefADSGoogle Scholar
  17. 17.
    C. Cambon, R. Rubinstein, F.S. Godeferd, New J. Phys. 6, 73 (2004)CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 32, 1 (1941); (English translation: Proc. R. Soc. Lond. A 434, 15 (1991))Google Scholar
  19. 19.
    S. Chakraborty, Phys. Fluids 20, 075106 (2008)CrossRefADSGoogle Scholar
  20. 20.
    S. Chakraborty, Phys. Fluids 19, 085110 (2007)CrossRefADSGoogle Scholar
  21. 21.
    S. Chakraborty, Physica D 238, 1256 (2009)zbMATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    S. Chakraborty, J.K. Bhattacharjee, Phys. Rev. E 76, 036304 (2007)CrossRefADSGoogle Scholar
  23. 23.
    S. Chakraborty, Role of third-order structure function in studying two-dimensionalisation of turbulence, Lev Davidovich Landau and His Impact on Contemporary Theoretical Physics, Horizons in World Physics (Nova Publishers, 2008), Vol. 264, Chap. 14Google Scholar
  24. 24.
    S. Chakraborty, Europhys. Lett. 79, 14002 (2007)CrossRefADSGoogle Scholar
  25. 25.
    E. Gledzer, Sov. Phys. Dokl. 18, 216 (1973)zbMATHADSGoogle Scholar
  26. 26.
    K. Ohkitani, M. Yamada, Prog. Theor. Phys. 81, 329 (1989)CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, S. Succi, Phys. Rev. E 48, R29 (1993)CrossRefADSGoogle Scholar
  28. 28.
    V.S. L’vov, E. Podivilov, A. Pomyalov, I. Proccacia, D. Vandembroucq, Phys. Rev. E 58, 1811 (1998)CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    T. Bohr, M.H. Jensen, G. Paladin, A. Vulpiani, Dynamical systems approach to turbulence (Cambridge University Press, Cambridge U.K., 1998)zbMATHGoogle Scholar
  30. 30.
    L. Biferale, Annu. Rev. Fluid Mech. 35, 441 (2003)CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    D. Biskamp, Phys. Rev. E 50, 2702 (1994)CrossRefADSGoogle Scholar
  32. 32.
    R. Pandit, S.S. Ray, D. Mitra, Dynamic multiscaling in turbulence, The Proceedings of the IUPAP Conference on Statistical Physics, Statphys 23, Euro. Phys. Journal B (2008)Google Scholar
  33. 33.
    S.S. Ray, D. Mitra, R. Pandit, New J. Phys. 10, 033003 (2008)CrossRefGoogle Scholar
  34. 34.
    M.H. Jensen, G. Paladin, A. Vulpiani, Phys. Rev. A 43, 798 (1991)CrossRefADSGoogle Scholar
  35. 35.
    D. Pisarenko, L. Biferale, D. Courvoisier, U. Frisch, M. Vergassola, Phys. Fluids A 5, 2533 (1993)zbMATHCrossRefADSGoogle Scholar
  36. 36.
    L. Kadanoff, D. Lohse, J. Wang, R. Benzi, Phys. Fluids 7, 617 (1995)zbMATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Z.S. She, E. Leveque, Phys. Rev. Lett. 72, 336 (1994)CrossRefADSGoogle Scholar
  38. 38.
    E. Aurell, G. Boffetta, A. Crisanti, P. Frick, G. Paladin, A. Vulpiani, Phys. Rev. E 50, 4705 (1994)CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    M.H. Jensen, Phys. Rev. Lett. 83, 76 (1999)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Niels Bohr International AcademyCopenhagen φDenmark
  2. 2.Niels Bohr InstituteCopenhagenDenmark
  3. 3.Department of Theoretical SciencesS.N. Bose National Centre for Basic Sciences, SaltlakeKolkataIndia

Personalised recommendations