Advertisement

The European Physical Journal B

, Volume 73, Issue 3, pp 321–326 | Cite as

High-pressure radial X-ray diffraction study of osmium to 58 GPa

  • H. Chen
  • D. HeEmail author
  • J. Liu
  • Y. Li
  • F. Peng
  • Z. Li
  • J. Wang
  • L. Bai
Solid State and Materials

Abstract

Nonhydrostatic compression behavior of osmium (Os) was investigated up to 58.2 GPa using radial X-ray diffraction (RXRD) together with lattice strain theory in a diamond-anvil cell. The apparent bulk modulus of Os derived from RXRD data varies from 262 GPa to 413 GPa, depending on Ψ, the orientation of the diffraction planes with respect to the loading axis. Fitting to the third-order Birch-Murnaghan equation of state, the RXRD data obtained at Ψ = 54.7° yields a bulk modulus K0 = 390 ± 6 GPa with pressure derivative K 0 fixed at 4. The ratio of differential stress to shear modulus t/G ranges from 0.024 to 0.029 at the pressures of 15.7–58.2 GPa. The yield strength was observed to increase with compression and reach the value of 11.7 GPa at the highest pressure. This confirms that Os is the strongest known pure metallic material compared with the reported stiff elemental metals such as W, Mo and Re. It was found that the apparent c/a ratio changed with the nonhydrostatic compression, as well as the orientation Ψ in our experiments. Moreover, the aggregate moduli of Os at high pressure were determined from the RXRD measurements.

Keywords

Yield Strength Shear Modulus Bulk Modulus Pressure Derivative Aggregate Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.R. Sahu, L. Kleinman, Phys. Rev. B 72, 113106 (2005)CrossRefADSGoogle Scholar
  2. 2.
    J.C. Zheng, Phys. Rev. B 72, 052105 (2005)CrossRefADSGoogle Scholar
  3. 3.
    M. Hebbache, M. Zemzemi, Phys. Rev. B 70, 224107 (2004)CrossRefADSGoogle Scholar
  4. 4.
    K. Gschneidner Jr., Solid State. Phys. 16, 275 (1964)CrossRefGoogle Scholar
  5. 5.
    K. Takemura, Phys. Rev. B 70, 012101 (2004)CrossRefGoogle Scholar
  6. 6.
    F. Occelli, D.L. Farber, J. Badro, C.M. Aracne, D.M. Teter, M. Hanfland, B. Canny, B. Couzinet, Phys. Rev. Lett. 93, 095502 (2004)CrossRefADSGoogle Scholar
  7. 7.
    H. Cynn, J.E. Klepeis, C.S. Yoo, D.A. Young, Phys. Rev. Lett. 88, 135701 (2002)CrossRefADSGoogle Scholar
  8. 8.
    P.M. Bell, H.K. Mao, Carnegie Inst. Washington Publ. 80, 404 (1981)Google Scholar
  9. 9.
    Z. Li, H. Ahsbahs, Rev. High Pressure Sci. Technol. 7, 145 (1998)zbMATHGoogle Scholar
  10. 10.
    T.S. Duffy, G.Y. Shen, J.F. Shu, H.K. Mao, R.J. Hemley, A.K. Singh, J. Appl. Phys. 86, 6729 (1999)CrossRefADSGoogle Scholar
  11. 11.
    A.K. Singh, H.K. Mao, J. Shu, R.J. Hemley, Phys. Rev. Lett. 80, 2157 (1998)CrossRefADSGoogle Scholar
  12. 12.
    K. Singh, C. Balasingh, H.K. Mao, R.J. Hemley, J. Shu, J. Appl. Phys. 83, 7567 (1998)CrossRefADSGoogle Scholar
  13. 13.
    M.B. Weinberger, S.H. Tolbert, A. Kavner, Phys. Rev. Lett. 100, 045506 (2008)CrossRefADSGoogle Scholar
  14. 14.
    L. Fast, J.M. Wills, B. Johansson, O. Eriksson, Phys. Rev. B 51, 17431 (1995)CrossRefADSGoogle Scholar
  15. 15.
    Y.M. Ma, M. Zhang, G. Zou (private communication) (C11 = 777.7; C12 = 224; C13 = 223.6; C33 = 855; C55 = 269.5; C66 = 276.85; all GPa)Google Scholar
  16. 16.
    S.-H. Shim, T.S. Duffy, T. Kenichi, Earth Planet. Sci. Lett. 203, 729 (2002)CrossRefADSGoogle Scholar
  17. 17.
    T.S. Duffy, G.Y. Shen, D.L. Heinz, J.F. Shu, Y. Ma, H.K. Mao, R.J. Hemley, A.K. Singh, Phys. Rev. B 60, 15063 (1999)CrossRefADSGoogle Scholar
  18. 18.
    T.S. Duffy, R.J. Hemley, H.K. Mao, Phys. Rev. Lett. 74, 1371 (1995)CrossRefADSGoogle Scholar
  19. 19.
    S.R. Shieh, T.S. Duffy, B.S. Li, Phys. Rev. Lett. 89, 255507 (2002)CrossRefADSGoogle Scholar
  20. 20.
    A.K. Singh, J. Appl. Phys. 73, 4278 (1993)CrossRefADSGoogle Scholar
  21. 21.
    A.K. Singh, J. Appl. Phys. 74, 5920 (1993)CrossRefADSGoogle Scholar
  22. 22.
    T. Uchida, N. Funamori, T. Yagi, J. Appl. Phys. 80, 739 (1996)CrossRefADSGoogle Scholar
  23. 23.
    J. Chen, D.J. Weidner, M.T. Vaughan, Nature (London) 419, 824 (2002)CrossRefADSGoogle Scholar
  24. 24.
    L. Gerward, S. Morup, H. Topsoe, J. Appl. Phys. 47, 822 (1976)CrossRefADSGoogle Scholar
  25. 25.
    D.W. He, T.S. Duffy, Phys. Rev. B 73, 134106 (2006)CrossRefADSGoogle Scholar
  26. 26.
    D.J. Weidner, Y. Wang, M.T. Vaughan, Geophys. Res. Lett. 21, 753 (1994)CrossRefADSGoogle Scholar
  27. 27.
    D.J. Weidner, Y. Wang, M.T. Vaughan, Science 266, 419 (1994)CrossRefADSGoogle Scholar
  28. 28.
    S.T. Weir, J. Akella, C. Ruddle, T. Goodwin, L. Hsiung, Phys. Rev. B 58, 11258 (1998)CrossRefADSGoogle Scholar
  29. 29.
    N. Nishiyama, Y.B. Wang, T. Uchida, T. Irifune, M.L. Rivers, S.R. Sutton, Geophys. Res. Lett. 32, L04307 (2005)CrossRefGoogle Scholar
  30. 30.
    X.H. Deng, W. Lu, Y.M. Hu, H.S. Gu, Physica B (2009)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • H. Chen
    • 1
  • D. He
    • 1
    Email author
  • J. Liu
    • 2
  • Y. Li
    • 2
  • F. Peng
    • 1
  • Z. Li
    • 1
  • J. Wang
    • 1
  • L. Bai
    • 2
  1. 1.Institute of Atomic and Molecular Physics, Sichuan UniversityChengduP.R. China
  2. 2.Institute of High Energy Physics, Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations