Advertisement

The European Physical Journal B

, Volume 73, Issue 1, pp 125–132 | Cite as

Spin hall effect associated with SU(2) gauge field

Solid State and Materials

Abstract

In this paper, we focus on the connection between spin Hall effect and spin force. Here we investigate that the spin force due to spin-orbit coupling, which, in two-dimensional system, is equivalent to forces of Hirsch and Chudnovsky besides constant factors 3 and \(\frac{3}{2}\) respectively, is a part of classic Anandan force, and that the spin Hall effect is an anomalous Hall effect. Furthermore, we develop the method of AC phase to derive the expression for the spin force, and note that the most basic spin Hall effect indeed originate from the AC phase and is therefore an intrinsic quantum mechanical property of spin. This method differs from approach of Berry phase in the study of anomalous Hall effect , which is the intrinsic property of the perfect crystal. On the other hand, we use an elegant skill to show that the Chudnovsky-Drude model is reasonable. Here we have improved the theoretical values of spin Hall conductivity of Chudnovsky. Compared to the theoretical values of spin Hall conductivity in the Chudnovsky-Drude model, ours are in better agreement with experimentation. Finally, we discuss the relation between spin Hall effect and fractional statistics.

Keywords

Lorentz Force Fractional Statistic Spin Current Berry Phase Hall Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.-A. Engel, E.I. Rashba, B.I. Halperin, arXiv: cond-mat/0603306Google Scholar
  2. 2.
    In this paper we only focus on the intrinsic Hall effect, with all extrinsic mechanisms of Hall effect (such as skew scattering and side-jump) disregarded. We will use the expression for the resistivity ρH to distinguish the ordinary and anomalous Hall effect. The ordinary Hall effect means the resistivity reads ρH = R 0 B, and the anomalous Hall effect the resistivity ρH = R 0 B + 4πR s M, where B the applied magnetic field and M the magnetization per unit volumeGoogle Scholar
  3. 3.
    E.M. Chudnovsky, Phys. Rev. Lett. 99, 206601 (2007)CrossRefADSGoogle Scholar
  4. 4.
    E.M. Chudnovsky, Phys. Rev. Lett. 100, 199704 (2008)CrossRefADSGoogle Scholar
  5. 5.
    B.A. Bernevig, S.C. Zhang, Phys. Rev. Lett. 96, 106802 (2006), arXiv: cond-mat/0504147CrossRefADSGoogle Scholar
  6. 6.
    J. Sinova, et al., Phys. Rev. Lett. 92, 126603 (2004), arXiv: cond-mat/0307663CrossRefADSGoogle Scholar
  7. 7.
    S.O. Valenzuela, M. Tinkham, Nature 442, 176 (2006)CrossRefADSGoogle Scholar
  8. 8.
    Y. Aharonov, A. Casher, Phys. Rev. Lett. 53, 319 (1984)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    J. Anandan, Phys. Lett. A 138, 347 (1989)CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    J. Anandan, Phys. Rev. Lett. 85, 1354 (2000)CrossRefADSGoogle Scholar
  11. 11.
    A.S. Goldhaber, Phys. Rev. Lett. 62, 482 (1989)CrossRefADSGoogle Scholar
  12. 12.
    J. Fröhlich, U.M. Studer, Rev. Mod. Phys. 65, 733 (1993)CrossRefADSGoogle Scholar
  13. 13.
    J.E. Hirsch, Phys. Rev. B 60, 14787 (1999)CrossRefADSGoogle Scholar
  14. 14.
    J.E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    J.E. Hirsch, arXiv: 0709.1280Google Scholar
  16. 16.
    M. Schulz, S. Trimper, Phys. Lett. A 372, 5905 (2008)CrossRefADSGoogle Scholar
  17. 17.
    V.Y. Kravchenko, Phys. Rev. Lett. 100, 199703 (2008)CrossRefADSGoogle Scholar
  18. 18.
    V.Y. Kravchenko, arXiv: 0805, 3724Google Scholar
  19. 19.
    F. Wilczek, Phys. Rev. Lett. 49, 957 (1982)CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    X.G. He, B.H.J. McKellar, Phys. Lett. B 256, 250(1991)CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    X.G. He, B.H.J. McKellar, Phys. Lett. B 264, 129(1991)CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    L.L. Foldy, Phys. Rev. 87, 688 (1952)zbMATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    C.N. Yang, R.L. Mills, Phys. Rev. 96, 191 (1954)CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    P.Q. Jin et al., J. Phys. A: Math. Gen. 39, 7115 (2006), arXiv: cond-mat/0502231zbMATHCrossRefADSGoogle Scholar
  25. 25.
    S.Q. Shen, Phys. Rev. Lett. 95, 187203 (2005)CrossRefADSGoogle Scholar
  26. 26.
    B. Zhou et al., Phys. Rev. B 73, 165303 (2006)CrossRefADSGoogle Scholar
  27. 27.
    A. Stern, Phys. Rev. Lett. 68, 1022 (1992)CrossRefADSGoogle Scholar
  28. 28.
    C.M. Ryu, Phys. Rev. Lett. 76, 968 (1996)CrossRefADSGoogle Scholar
  29. 29.
    A.V. Balatsky, B.L. Altshuler, Phys. Rev. Lett. 70, 1678 (1993)CrossRefADSGoogle Scholar
  30. 30.
    M.C. Chang, Q. Niu, Phys. Rev. B 53, 7010 (1996)CrossRefADSGoogle Scholar
  31. 31.
    N. Nagaosa et al., arXiv: cond-mat/0904.4154Google Scholar
  32. 32.
    M.V. Berry, Proc. R. Soc. London Ser. A 392, 45 (1984)zbMATHCrossRefADSGoogle Scholar
  33. 33.
    T.H. Boyer, Phys. Rev. A 36, 5083 (1987)CrossRefADSGoogle Scholar
  34. 34.
    T. Lee, C.M. Ryu, Phys. Lett. A 194, 310 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    The more general case for singularity function f n (x) has property that \( \nabla \left( {\mathop {\lim }\limits_{n \to \infty } f_n (x)} \right) \ne \mathop {\lim }\limits_{n \to \infty } \left( {\nabla f_n (x)} \right) \) and \( \nabla \left( {\sum\limits_{n = 1}^\infty {f_n (x)} } \right) \ne \sum\limits_{n = 1}^\infty {\left( {\nabla f_n (x)} \right)} \) Google Scholar
  36. 36.
    F. Wilczek, A. Zee, Phys. Rev. Lett. 52, 2111 (1984); H.Z. Li, Phys. Rev. Lett. 58, 539 (1987)CrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Sun Chang-Pu, Ge Mo-Lin, Science in China A 05, 478 (1990)Google Scholar
  38. 38.
    Y. Wang et al., Phys. Rev. Lett. 96, 066601 (2006)CrossRefADSGoogle Scholar
  39. 39.
    R. Shen et al., Phys. Rev. B 74, 125313 (2006)CrossRefADSGoogle Scholar
  40. 40.
    A.V. Rodina, A.Y. Alekseev, Phys. Rev. B 78, 115304 (2008)CrossRefADSGoogle Scholar
  41. 41.
    N. Fumita et al., Phys. Rev. D 49, 4277 (1994)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Economy, Industry and Business Management Institute, Chongqing UniversityChongqingP.R. China

Personalised recommendations