Advertisement

Thermal entanglement in the anisotropic Heisenberg model with Dzyaloshinskii-Moriya interaction in an inhomogeneous magnetic field

  • E. AlbayrakEmail author
Solid State and Materials

Abstract

The thermal entanglement of a two-qubit anisotropic Heisenberg XXZ chain with Dzyaloshinskii-Moriya (DM) interaction in an inhomogeneous magnetic field was studied in detail. The effects of the DM parameter, external magnetic field (B), a parameter b which controls the inhomogeneity of B and the bilinear interaction parameters Jx = Jy ≠ Jz (the anisotropic case) on the concurrence (C) was formulated and studied in detail. The behaviors of the concurrences for the cases between (J = Jz = 1) and (J = -1,Jz = 1) and, (J = Jz = -1) and (J = 1,Jz = -1) at the ground state and at the thermal equilibrium are exactly the same. It was found that for the antiferromagnetic (AFM) case the entanglements persist to higher temperatures in comparison with the ferromagnetic (FM) case. In addition, the AFM case presents a special point at which the nonzero concurrences are all equal at some special temperatures. The further properties will be given in the text.

Keywords

Entangle State Mixed Phase Thermal Entanglement Ground State Phase Diagram Ground State Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K.M. O’Connor, W.K. Wootters, Phys. Rev. A 63, 052302 (2001)CrossRefADSGoogle Scholar
  2. 2.
    M.C. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87, 017901 (2001)CrossRefADSGoogle Scholar
  3. 3.
    D. Gunlycke, V.M. Kendon, V. Vedral, S. Bose, Phys. Rev. A 64, 042302 (2001)CrossRefADSGoogle Scholar
  4. 4.
    V. Coffman, J. Kundu, W.K. Wootters, Phys. Rev. A 61, 052306 (2000)CrossRefADSGoogle Scholar
  5. 5.
    G.-F. Zhang, J.-Q. Liang, G.-E. Zhang, Q.W. Yan, Eur. Phys. J. D 32, 409 (2005)CrossRefADSGoogle Scholar
  6. 6.
    V. Vedral, M.B. Plenio, M.A. Rippin, P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997)zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    X. Wang, Z.D. Wang, Phys. Rev. A 73, 064302 (2006)CrossRefADSGoogle Scholar
  8. 8.
    X. Wang, Phys. Lett. A 331, 164 (2004)zbMATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    D. Jonathan, M.B. Plenio, Phys. Rev. Lett. 83, 3566 (1999)zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    D.V. Khveshchenko, Phys. Rev. B 68, 193307 (2003)CrossRefADSGoogle Scholar
  11. 11.
    S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)CrossRefADSGoogle Scholar
  12. 12.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)CrossRefADSGoogle Scholar
  13. 13.
    G.L. Kamta, A.F. Starace, Phys. Rev. Lett. 88, 107901 (2002)CrossRefADSGoogle Scholar
  14. 14.
    G.L. Kamta, A.Y. Istomin, A.F. Starace, Eur. Phys. J. D 44, 389 (2007)CrossRefADSGoogle Scholar
  15. 15.
    Y. Sun, Y. Chen, H. Chen, Phys. Rev. A 68, 044301 (2003)CrossRefADSGoogle Scholar
  16. 16.
    R. Zhang, S. Zhu, Phys. Lett. A 348, 110 (2006)CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    X. Wang, Phys. Rev. A 64, 012313 (2001)CrossRefADSGoogle Scholar
  18. 18.
    Y. Yeo, Phys. Rev. A 66, 062312 (2002)CrossRefADSGoogle Scholar
  19. 19.
    Y. Zhang, G.-L. Long, Y.-C. Wu, G.-C. Guo, Commun. Theor. Phys. 47, 787 (2007)CrossRefGoogle Scholar
  20. 20.
    L. Zhou, H.S. Song, Y.Q. Guo, C. Li, Phys. Rev. A 68, 024301 (2003)CrossRefADSGoogle Scholar
  21. 21.
    D.-C. Li, Z.-L. Cao, Chin. Phys. Lett. 26, 020309 (2009)CrossRefADSGoogle Scholar
  22. 22.
    X.Y. Zhao, L. Zhou, Int. J. Theor. Phys. 46, 2437 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    X. Wang, H. Fu, A.I. Solomon, J. Phys. A: Math. Gen. 34, 11307 (2001)zbMATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    L.F. Santos, Phys. Rev. A 67, 062306 (2003)CrossRefADSGoogle Scholar
  25. 25.
    X. Wang, Phys. Lett. A 281, 101 (2001)zbMATHCrossRefMathSciNetADSGoogle Scholar
  26. 26.
    S.-J. Gu, H.-Q. Lin, Y.Q. Li, Phys. Rev. A 68, 042330 (2003)CrossRefADSGoogle Scholar
  27. 27.
    G.-F. Zhang, Phys. Rev. A 75, 034304 (2007)CrossRefADSGoogle Scholar
  28. 28.
    T. Vértesi, E. Bene, Phys. Rev. B 73, 134404 (2006)CrossRefADSGoogle Scholar
  29. 29.
    Č. Brukner, V. Vedral, A. Zeilinger, Phys. Rev. A 73, 012110 (2006)CrossRefADSGoogle Scholar
  30. 30.
    T.G. Rappoport, L. Ghivelder, J.C. Fernandes, R.B. Guimarães, M.A. Continentino, Phys. Rev. B 75, 054422 (2007)CrossRefADSGoogle Scholar
  31. 31.
    A.M. Souza, M.S. Reis, D.O. Soares-Pinto, I.S. Oliveira, R.S. Sarthour, Phys. Rev. B 77, 104402 (2008)CrossRefADSGoogle Scholar
  32. 32.
    A.M. Souza, D.O. Soares-Pinto, R.S. Sarthour, I.S. Oliveira, M.S. Reis, P. Brandão, A.M. dos Santos, Phys. Rev. B 79, 054408 (2009)CrossRefADSGoogle Scholar
  33. 33.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    M. Asoudeh, V. Karimipour, Phys. Rev. A 71, 022308 (2005)CrossRefADSGoogle Scholar
  36. 36.
    G.-F. Zhang, S.-S. Li, Phys. Rev. A 72, 034302 (2005)CrossRefADSGoogle Scholar
  37. 37.
    D.-C. Li, X.-P. Wang, Z.-L. Cao, J. Phys.: Condens. Matter. 20, 325229 (2008)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of PhysicsErciyes UniversityKayseriTurkey

Personalised recommendations