Microscopic modeling of energy relaxation and decoherence in quantum optoelectronic devices at the nanoscale

  • D. Taj
  • R. C. Iotti
  • F. Rossi


We shall review and discuss the key problem of providing a microscopic modeling of state-of-the-art electronic quantum devices. In particular we shall focus on the description of energy-relaxation and decoherence phenomena, explicitly showing the intrinsic limitations of some of the existing treatments (the conventional Markovian approach) via analytical results, and proposing an alternative formulation of the problem in terms of a generalized Fermi's Golden Rule.


Density Matrix Energy Relaxation Quantum Device Boltzmann Theory Markov Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    See, e.g., C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulations (Springer, Wien, 1989)Google Scholar
  2. 2.
    See, e.g., Hot Carriers in Semiconductor Nanostructures: Physics and Applications, edited by J. Shah (Academic Press inc., Boston, 1992); F.A. Buot, Phys. Rep. 234, 73 (1993); F.A. Buot, Theory of Transport Properties of Semiconductor Nanostructures, edited by E. Schöll (Chapman and Hall, London, 1998)Google Scholar
  3. 3.
    See, e.g., J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Berlin, 1996)Google Scholar
  4. 4.
    See, e.g., D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1998); L. Jacak, P. Hawrylak, A. Wojs, Quantum Dots (Springer, Berlin, 1998); S.M. Reimann, M. Manninen, Rev. Mod. Phys. 74, 1283 (2002)Google Scholar
  5. 5.
    See, e.g., F. Rossi, T. Kuhn, Rev. Mod. Phys. 74, 895 (2002)CrossRefADSGoogle Scholar
  6. 6.
    See, e.g., W. Frensley, Rev. Mod. Phys. 62, 3 (1990)CrossRefGoogle Scholar
  7. 7.
    See, e.g., Physics of Quantum Electron Devices, edited by F. Capasso (Springer, Berlin, 1990)Google Scholar
  8. 8.
    See, e.g., C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001); R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A. Giles Davies, D.A. Ritchie, R.C. Iotti, F. Rossi, Nature 417, 156 (2002); R.C. Iotti, F. Rossi, Rep. Prog. Phys. 68, 2533 (2005)Google Scholar
  9. 9.
    See, e.g., Semiconductor Macroatoms: Basic Physics and Quantum-device Applications, edited by F. Rossi (Imperial College Press, London, 2005); Focus on Solid State Quantum Information, edited by R. Fazio, New J. Phys. 7 (2005)Google Scholar
  10. 10.
    See e.g., M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)Google Scholar
  11. 11.
    See, e.g., E.B. Davies, Quantum Theory of Open Systems (Academic Press, London, 1976)zbMATHGoogle Scholar
  12. 12.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976)zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    See, e.g., S.G. Schirmer, A.I. Solomon, Phys. Rev. A 70, 022107 (2004)CrossRefADSGoogle Scholar
  14. 14.
    R. Dümcke, H. Spohn, Z. Phys. B 34, 419 (1979)CrossRefADSGoogle Scholar
  15. 15.
    E.B. Davies, Commun. Math. Phys. 39, 91 (1974)zbMATHCrossRefADSGoogle Scholar
  16. 16.
    See, e.g., E. Fermi, Nuclear Physics (University of Chicago Press, 1950)Google Scholar
  17. 17.
    R. Alicky, International Journal of Theoretical Physics 16, 351 (1977)CrossRefADSGoogle Scholar
  18. 18.
    See, e.g., H. Spohn, Rev. Mod. Phys. 53, 569 (1980)CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    E.B. Davies, Math. Ann. 219, 147 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    D. Taj, F. Rossi, Phys. Rev. A 78, 052113 (2008)CrossRefADSGoogle Scholar
  21. 21.
    D. Taj, Weak Coupling Limit I: a Contraction Semigroup for Infinite Subsystems, e-print: [arXiv:0905.1012v1] (2009)Google Scholar
  22. 22.
    See e.g. A. Vagov, V.M. Axt, T. Kuhn, Phys. Rev. B 67, 115338 (2003)CrossRefADSGoogle Scholar
  23. 23.
    See, e.g., L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962)zbMATHGoogle Scholar
  24. 24.
    See, e.g., L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1965)Google Scholar
  25. 25.
    See, e.g., H. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 1996)Google Scholar
  26. 26.
    See, e.g., R. Lake, S. Datta, Phys. Rev. B 45, 6670 (1992); C. Rivas et al., Appl. Phys. Lett. 78, 814 (2002)Google Scholar
  27. 27.
    See, e.g., F. Rossi, R. Brunetti, C. Jacoboni, in Hot Carriers in Semiconductor Nanostructures: Physics and Applications, edited by J. Shah (Academic Press Inc., Boston, 1992), p. 153Google Scholar
  28. 28.
    See, e.g., N.N. Bogoliubov, Lectures on Quantum Statistics (Gordon and Breach, New York, 1967)zbMATHGoogle Scholar
  29. 29.
    See, e.g., V.M. Axt, S. Mukamel, Rev. Mod. Phys. 70, 145 (1998)Google Scholar
  30. 30.
    See, e.g., R. Brunetti, C. Jacoboni, F. Rossi, Phys. Rev. B 39, 10781 (1989); P. Bordone, M. Pascoli, R. Brunetti, A. Bertoni, C. Jacoboni, Phys. Rev. B 59, 3060 (1999)CrossRefADSGoogle Scholar
  31. 31.
    See, e.g., T. Kuhn, in Theory of Transport Properties of Semiconductor Nanostructures, edited by E. Schöll (Chapman and Hall, London, 1998), p. 173Google Scholar
  32. 32.
    R.C. Iotti, E. Ciancio, F. Rossi, Phys. Rev. B 72, 125347 (2005)CrossRefADSGoogle Scholar
  33. 33.
    D. Taj, Weak Coupling Limit II: on the Quantum Fokker-Planck Equation, e-print: [arXiv:0905.1019v1] (2009)Google Scholar
  34. 34.
    K. Kraus, Ann. Phys. 64, 311 (1970)MathSciNetADSGoogle Scholar
  35. 35.
    See, e.g., A.A. Budini, Phys. Rev. A 74, 053815 (2006)CrossRefADSGoogle Scholar
  36. 36.
    T. Grange, R. Ferreira, G. Bastard, PRB 76, 241304(R) (2007)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Physics Dept., Politecnico di TorinoTorinoItaly

Personalised recommendations