The role of communication and imitation in limit order markets

Topical issue on The Physics Approach to Risk: Agent-Based Models and Networks


In this paper we develop an order driver market model with heterogeneous traders that imitate each other on different network structures. We assess how imitations among otherway noise traders, can give rise to well known stylized facts such as fat tails and volatility clustering. We examine the impact of communication and imitation on the statistical properties of prices and order flows when changing the networks’ structure, and show that the imitation of a given, fixed agent, called “guru", can generate clustering of volatility in the model. We also find a positive correlation between volatility and bid-ask spread, and between fat-tailed fluctuations in asset prices and gap sizes in the order book.


02.50.-r Probability theory, stochastic processes, and statistics 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion 89.65.Gh Economics; econophysics, financial markets, business and management 89.65.-s Social and economic systems 


  1. 1.
    B. LeBaron, W.B. Arthur, R. Palmer, Journal of Economic Dynamics and control 23, 1487 (1999)MATHCrossRefGoogle Scholar
  2. 2.
    T. Lux, M. Marchesi, International Journal of Theoretical and Applied Finance 3, 675 (2001)CrossRefMathSciNetGoogle Scholar
  3. 3.
    C. Chiarella, G. Iori, Quantitative Finance 2, 346 (2002)CrossRefGoogle Scholar
  4. 4.
    M. LiCalzi, P. Pellizzari, Quantitative finance 3, 470 (2003)CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    C. Chiarella, G. Iori, J. Perello, Journal of Economic Dynamics and Control 33, 525 (2008)CrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Kirman, G. Teyssiere, Studies in nonlinear dynamics and econometrics 5, 281 (2002)CrossRefGoogle Scholar
  7. 7.
    Y. Liu, Journal Econometrics 99, 139 (2000)MATHCrossRefGoogle Scholar
  8. 8.
    A.V. Bannerjee, Quarterly Journal of Economics 107, 797 (1992)CrossRefGoogle Scholar
  9. 9.
    A.V. Bannerjee, Review of Economic Studies 60, 309 (1993)CrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Kirman, Quarterly Journal of economics 108, 137 (1993)CrossRefGoogle Scholar
  11. 11.
    A. Orléan, Journal of Economic Behavior and Organization 28, 257 (1995)CrossRefGoogle Scholar
  12. 12.
    R. Cont, J.P. Bouchaud, Macroeconomic Dynamics 4, 170 (2000)MATHCrossRefGoogle Scholar
  13. 13.
    M. Raberto, S. Cincotti, S.M. Focardi, M. Marchesi, Physica A 299, 319 (2001)MATHCrossRefADSGoogle Scholar
  14. 14.
    G. Iori, Journal of Economic Behavior and Organization 49, 269 (2002)CrossRefGoogle Scholar
  15. 15.
    D. Stauffer, D. Sornette, Physica A 271, 496 (1999)CrossRefADSGoogle Scholar
  16. 16.
    B. LeBaron, R. Yamamoto, Physica A 383, 85 (2007)CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    G.S. Becker, Journal of Political Economy 70, 1 (1962)CrossRefGoogle Scholar
  18. 18.
    D.K. Gode, S. Sunder, Journal of Political Economy 101, 119 (1993)CrossRefGoogle Scholar
  19. 19.
    D.K. Gode, S. Sunder, The Quarterly Journal of Economics 112, 603 (1997)CrossRefGoogle Scholar
  20. 20.
    N.J. Vriend in Many-Agent Simulation and Artificial Life, edited by E. Hillebrand, J. Stender (IOS, Amsterdam, 1994), pp. 31–47Google Scholar
  21. 21.
    N.J. Vriend, Journal of Economic Behavior and Organization 29, 263 (1996)CrossRefGoogle Scholar
  22. 22.
    N.J. Vriend, Journal of Economic Behavior and Organization 24, 1 (2000)MATHMathSciNetGoogle Scholar
  23. 23.
    P. Heemeijer, C. Hommes, J. Sonnemans, J. Tuinstra, Working paper (2007)Google Scholar
  24. 24.
    F. Lillo, J.D. Farmer, Studies in Nonlinear Dynamics and Econometrics 8, 1 (2004)Google Scholar
  25. 25.
    Z. Eisler, J.-P. Bouchaud, J. Kockelkoren, Working paper (2009)Google Scholar
  26. 26.
    J.P. Bouchaud, M. Mezard, M. Potters, Quantitative Finance 2, 251 (2002)CrossRefGoogle Scholar
  27. 27.
    M. Potters, J.P. Bouchaud, Physica A 324, 133 (2003)MATHCrossRefADSGoogle Scholar
  28. 28.
    I.I. Zovko, J.D. Farmer, Quantitative finance 2, 387 (2002)CrossRefGoogle Scholar
  29. 29.
    J.D. Farmer, L. Gillemont, F. Lillo, S. Mike, A. Sen, Quantitative finance 4, 383 (2004)CrossRefGoogle Scholar
  30. 30.
    X. Gabaix, P. Gopikrishnan, P. Plerou, H.E. Stanley, Nature 423, 267 (2003)CrossRefADSGoogle Scholar
  31. 31.
    G. Tedeschi, G. Iori, M. Gallegati, Working paper (2008)Google Scholar
  32. 32.
    Z. Ding, C. Granger, R. Engel, Journal of empirical finance 1, 185 (1983)Google Scholar
  33. 33.
    Z. Ding, C. Granger, Stylized facts on the temporal distributional properties of daily data from speculative markets, Working Paper (1994)Google Scholar
  34. 34.
    Z. Ding, C. Granger, Journal of Econometrics 73, 185 (1996)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    M.M. Dacorogna, U.A. Muller, O.V. Pictet, C.G. De Vries, Olsen and Associates internal document UAM (1992)Google Scholar
  36. 36.
    R. Cont, M. Potter, J.P. Bouchaud, edited by Dubrulle, Graner, Sornette (Springer, 1997)Google Scholar
  37. 37.
    R. Cont, Doctoral Thesis, Université de Paris XI, 1998Google Scholar
  38. 38.
    G. Bottazzi, G. Dosi, I. Rebesco, Journal of Mathematical Economics 41, 197 (2005)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    B.M. Hill, Annals of Statistics 3, 1163 (1975)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    T. Lux, Applied Financial Economics 11, 299 (2001)CrossRefGoogle Scholar
  41. 41.
    B. Mandelbrot, Annals of Economic and Social Mesurements 1, 259 (1972)Google Scholar
  42. 42.
    A. Lo, Econometrica 59, 1279 (1991)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of EconomicsUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Department of EconomicsCity University LondonLondonUK

Personalised recommendations