Random planar graphs and the London street network
Interdisciplinary Physics
First Online:
- 549 Downloads
- 105 Citations
Abstract
In this paper we analyse the street network of London both in its primary and dual representation. To understand its properties, we consider three idealised models based on a grid, a static random planar graph and a growing random planar graph. Comparing the models and the street network, we find that the streets of London form a self-organising system whose growth is characterised by a strict interaction between the metrical and informational space. In particular, a principle of least effort appears to create a balance between the physical and the mental effort required to navigate the city.
PACS
89.75.-k Complex systems 89.75.Da Systems obeying scaling laws 89.65.Lm Urban planning and constructionPreview
Unable to display preview. Download preview PDF.
References
- 1.M. Batty, Cities and Complexity (The MIT Press, Cambridge, Massachussets, 2005)Google Scholar
- 2.G.K. Zipf, Human Behaviour and the Principle of Least Effort (Addison-Wesley Press, 1949)Google Scholar
- 3.M. Batty, P. Longley, Fractal cities (Academic Press, London and San Diego, 1996)Google Scholar
- 4.P. Blanchard, D. Volchenkov, Mathematical Analysis of Urban Spatial Networks (Springer Verlag Berlin, Heidelberg, 2009)zbMATHGoogle Scholar
- 5.K.J. Kansky, Structure of transportation networks (University of Chicago, Chicago, 1963)Google Scholar
- 6.B. Jiang, C. Claramunt, Environ. Plann. B 31, 151 (2004)CrossRefGoogle Scholar
- 7.L. Euler, Comm. Acad. Sci. I. Petropol. 8, 128 (1736)Google Scholar
- 8.A.P. Masucci, G.J. Rodgers, Phys. A 387, 3781 (2008)CrossRefGoogle Scholar
- 9.V. Colizza, A. Vespignani, Phys. Rev. Lett. 99, 148701 (2007)CrossRefADSGoogle Scholar
- 10.A. Wilson, J.R. Soc. Interface 5, 865 (2008)CrossRefGoogle Scholar
- 11.S. Porta, P. Crucitti, V. Latora, Phys. A 369, 853 (2006)CrossRefGoogle Scholar
- 12.A.L. Barabási, R. Albert, H. Jeong, Phys. A 272, 173 (1999)CrossRefGoogle Scholar
- 13.R. Diestel, Graph Theory (Springer-Verlag Heidelberg, New York, 2005)zbMATHGoogle Scholar
- 14.M. Rosvall, A. Trusina, P. Minnaghen, K. Sneppen, Phys. Rev. Lett. 94, 028701 (2005)CrossRefADSGoogle Scholar
- 15.J. Simmie, Planning London (UCL Press, London, UK, 1994)Google Scholar
- 16.M. Barthélemy, A. Flammini, Phys. Rev. Lett. 100, 138702 (2008)CrossRefADSGoogle Scholar
- 17.S. Gerke, C. McDiarmid, Comb. Probab. Comput. 13, 165 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
- 18.R. Bruegmann, Sprawl: a compact history (University of Chicago Press, Illinois, 2005)Google Scholar
- 19.J. Buhl, J. Gautrais, N. Reeves, R.V. Solé, S. Valverde, P. Kuntz, G. Theraulaz, Eur. Phys. J. B 49, 513 (2006)CrossRefADSGoogle Scholar
- 20.A.P. Masucci, G.J. Rodgers, Adv. in Compl. Syst. 12, 113 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
- 21.M.A. Serrano, M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 74, 055101 (2006)CrossRefADSGoogle Scholar
- 22.S. Lämmer, B. Gehlsen, D. Helbing, Phys. A 363, 89 (2006)CrossRefGoogle Scholar
- 23.L. Figueiredo, L. Amorim, 6th International Space Syntax (Istanbul, Turkey, 2007)Google Scholar
- 24.D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)CrossRefADSGoogle Scholar
- 25.V. Kalapala, V. Sanwalani, A. Clauset, C. Moore, Phys. Rev. E 73, 026130 (2006)CrossRefADSGoogle Scholar
- 26.M. Boguñá, R. Pastor-Satorras, A. Vespignani, Eur. Phys. J. B 38, 205 (2004)CrossRefADSGoogle Scholar
- 27.L.C. Freeman, Social Networks 1, 215 (1979)CrossRefGoogle Scholar
- 28.M. Batty, Envir. and Plann. B 6, 191 (2009)CrossRefGoogle Scholar
- 29.
- 30.
Copyright information
© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009