Advertisement

The European Physical Journal B

, Volume 70, Issue 4, pp 483–496 | Cite as

Conserving quasiparticle calculations for small metal clusters

  • G. Pal
  • Y. Pavlyukh
  • H. C. SchneiderEmail author
  • W. Hübner
Mesoscopic and Nanoscale Systems

Abstract

A novel approach for GW-based calculations of quasiparticle properties for finite systems is presented, in which the screened interaction is obtained directly from a linear response calculation of the density-density correlation function. The conserving nature of our results is shown by explicit evaluation of the f-sum rule. As an application, energy renormalizations and level broadenings are calculated for the closed-shell Na9 + and Na21 + clusters, as well as for Na4. Pronounced improvements of conserving approximations to RPA-level results are obtained.

PACS

73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals 73.20.Mf Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) 36.40.Gk Plasma and collective effects in clusters 71.45.Gm Exchange, correlation, dielectric and magnetic response functions, plasmons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Hedin, Phys. Rev. 139, A796 (1965) Google Scholar
  2. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002) Google Scholar
  3. F. Aryasetiawan, O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998) Google Scholar
  4. V.P. Zhukov, F. Aryasetiawan, E.V. Chulkov, P.M. Echenique, Phys. Rev. B 65, 115116 (2002) Google Scholar
  5. M. Rohlfing, N.-P. Wang, P. Krüger, J. Pollmann, Phys. Rev. Lett. 91, 256802 (2003) Google Scholar
  6. B. Holm, U. von Barth, Phys. Rev. B 57, 2108 (1998) Google Scholar
  7. W.D. Schöne, A.G. Eguiluz, Phys. Rev. Lett. 81, 1662 (1998) Google Scholar
  8. S.V. Faleev, M. van Schilfgaarde, T. Kotani, Phys. Rev. Lett. 93, 126406 (2004) Google Scholar
  9. P. Sun, G. Kotliar, Phys. Rev. Lett. 92, 196402 (2004) Google Scholar
  10. W. Ku, A.G. Eguiluz, Phys. Rev. Lett. 89, 126401 (2002) Google Scholar
  11. G.D. Mahan, B.E. Sernelius, Phys. Rev. Lett. 62, 2718 (1989) Google Scholar
  12. A. Schindlmayr, R.W. Godby, Phys. Rev. Lett. 80, 1702 (1998) Google Scholar
  13. D. Tamme, R. Schepe, K. Henneberger, Phys. Rev. Lett. 83, 241 (1999) Google Scholar
  14. Y. Takada, Phys. Rev. Lett. 87, 226402 (2001) Google Scholar
  15. S. Grabowski, M.E. Garcia, K.H. Bennemann, Phys. Rev. Lett. 72, 3969 (1994) Google Scholar
  16. M. Quijada, R.D. Muiño, P.M. Echenique, Nanotechnology 16, S176 (2005) Google Scholar
  17. Y.Pavlyukh, W. Hübner, Phys. Lett. A 327, 241 (2004) Google Scholar
  18. G. Baym, L.P. Kadanoff, Phys. Rev. 124, 287 (1961) Google Scholar
  19. F. Green, D. Neilson, J. Szymanski, Phys. Rev. B 31, 2779 (1985) Google Scholar
  20. G. Strinati, H.J. Mattausch, W. Hanke, Phys. Rev. B 25, 2867 (1982) Google Scholar
  21. N.-H. Kwong, M. Bonitz, Phys. Rev. Lett. 84, 1768 (2000) Google Scholar
  22. G. Baym, Phys. Rev. 127, 1391 (1962) Google Scholar
  23. L. Hedin, S. Lundqvist, Solid State Physics 23, 1 (1969) Google Scholar
  24. C.O. Almbladh, J. Phys. 35, 127 (2006) Google Scholar
  25. R.D. Sole, L. Reining, R.W. Godby, Phys. Rev. B 49, 8024 (1994) Google Scholar
  26. E.L. Shirley, R.M. Martin, Phys. Rev. B 47, 15404 (1993) Google Scholar
  27. L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Addison-Wesley, New York, 1989) Google Scholar
  28. A. V.Kuznetsov, Phys. Rev. B 44, 8721 (1991) Google Scholar
  29. W.D. Kraeft, M. Schlanges, J. Vorberger, H.E. DeWitt, Phys. Rev. E 66, 46405 (2002) Google Scholar
  30. R. Binder, S.W. Koch, Prog. Quant. Electr. 19, 307 (1995) Google Scholar
  31. D. Kremp, M. Schlanges, W.D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Berlin Heidelberg, New York, 2005) Google Scholar
  32. N.E. Dahlen, R. van Leeuwen, Phys. Rev. Lett. 98, 153004 (2007) Google Scholar
  33. F. Jahnke, M. Kira, S.W. Koch, Z. Phys. B: Condens. Matter 104, 559 (1997) Google Scholar
  34. S. Ismail-Beigi, S.G. Louie, Phys. Rev. Lett. 90, 076401 (2003) Google Scholar
  35. W.R. Wadt, P.J. Hay, J. Chem. Phys 82, 284 (1985) Google Scholar
  36. K.I. Peterson, P.D. Dao, R.W. Farley, A.W. Castleman, Jr, J. Chem. Phys. 80, 1780 (1984) Google Scholar
  37. K.M. McHugh, J.G. Eaton, G.H. Lee, H.W. Sarkas, L.H. Kidder, J.T. Snodgrass, M.R. Manaa, K.H. Bowen, J. Chem. Phys. 91, 3792 (1989) Google Scholar
  38. G. Onida, L. Reining, R.W. Godby, R.D. Sole, W. Andreoni, Phys. Rev. Lett. 75, 818 (1995) Google Scholar
  39. M.M. Kappes, M. Schär, U. Röthlisberger, C. Yeretzian, E. Schumacher, Chem. Phys. Lett. 143, 251 (1988) Google Scholar
  40. Y. Noguchi, S. Ishii, K. Ohno, T. Sasaki, J. Chem. Phys. 129, 104104 (2008) Google Scholar
  41. Y. Pavlyukh, W. Hübner, Phys. Rev. B 75, 205129 (2007) Google Scholar
  42. R.N. Barnett, U. Landman, G. Rajagopal, Phys. Rev. Lett. 67, 3061 (1991) Google Scholar
  43. K. Clemenger, Phys. Rev. B 32, 1359 (1985) Google Scholar
  44. G. Lauritsch, P.-G. Reinhard, J. Meyer, M. Brack, Phys. Lett. A 160, 179 (1991) Google Scholar
  45. R. Schlipper, R. Kusche, B. von Issendorff, H. Haberland, Phys. Rev. Lett. 80, 1194 (1998) Google Scholar
  46. J.-H. Klein-Wiele, P. Simon, H.-G. Rubahn, Phys. Rev. Lett. 80, 45 (1998) Google Scholar
  47. Note that it is hard to give correlation functions depending on four Keldysh indices a direct physical meaning, as it is possible for, say, the retarded and kinetic components of Green’s functions with two Keldysh indices; see, e.g., reference Kremp:Book Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • G. Pal
    • 1
  • Y. Pavlyukh
    • 1
  • H. C. Schneider
    • 1
    Email author
  • W. Hübner
    • 1
  1. 1.Physics Department and Research Center OPTIMASKaiserslautern UniversityKaiserslauternGermany

Personalised recommendations