The European Physical Journal B

, Volume 70, Issue 3, pp 363–367 | Cite as

Phase-field study of free growth in a channel: from thermal to chemical solidification

  • T. Ducousso
  • R. Guérin
  • J.-M. DebierreEmail author
Solid State and Materials


The thermal and the chemical phase-field models for free growth in a two-dimensional channel are both studied in their one-sided version for which diffusion only occurs in the liquid. We compare the steady state fingers obtained in our phase-field simulations with the results of boundary integral techniques available in the literature. The excellent agreement found between both methods provides a valuable benchmark of the one-sided thin-interface phase model which makes use of an antitrapping current. Coexistence of several steady states predicted by the Green’s function calculations is also recovered. The dynamical stability of two competing modes (symmetric and asymmetric finger) is studied and the extension of their respective basins of attraction is evaluated. General implications of our results for a large class of isotropic systems are discussed.

PACS General theory of the solid-liquid transition 89.75.Kd Patterns 81.10.Aj Theory and models of crystal growth; physics of crystal growth, crystal morphology, and orientation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Karma, W.J. Rappel, Phys. Rev. E 53, R3017 (1996); A. Karma, W.J. Rappel, Phys. Rev. E 57, 4323 (1998)CrossRefADSGoogle Scholar
  2. 2.
    A. Karma, Phys. Rev. Lett. 87, 115701 (2001)CrossRefADSGoogle Scholar
  3. 3.
    P.G. Saffman, G.I. Taylor, Proc. R. Soc. London, Ser. A 245, 312 (1958)zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    D.A. Kessler, J. Koplik, H. Levine, Phys. Rev. A 34, 4980 (1986)CrossRefADSGoogle Scholar
  5. 5.
    E.A. Brener, M.B. Geĭlickman, D. Temkin, Sov. Phys. JETP 67, 1002 (1988)Google Scholar
  6. 6.
    D.A. Kessler, J. Koplik, H. Levine, Adv. Phys. 37, 255 (1988)CrossRefADSGoogle Scholar
  7. 7.
    M. Ben Amar, Europhys. Lett. 16, 367 (1991)CrossRefADSGoogle Scholar
  8. 8.
    Y. Tu, Phys. Rev. A 44, 1203 (1991)CrossRefADSGoogle Scholar
  9. 9.
    E.A. Brener, V.I. Mel’nikov, Adv. Phys. 40, 53 (1991)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    M. Ben Amar, E. Brener, Phys. Rev. Lett. 75, 561 (1995)CrossRefADSGoogle Scholar
  11. 11.
    E. Brener, H. Müller-Krumbhaar, Y. Saito, D. Temkin, Phys. Rev. E 47, 1151 (1993)CrossRefADSGoogle Scholar
  12. 12.
    T. Ihle, H. Müller-Krumbhaar, Phys. Rev. Lett. 70, 3083 (1993)CrossRefADSGoogle Scholar
  13. 13.
    T. Ihle, H. Müller-Krumbhaar, Phys. Rev. E 49, 2972 (1994)CrossRefADSGoogle Scholar
  14. 14.
    R. Kupferman, D.A. Kessler, E. Ben-Jacob, Physica A 213, 451 (1995)CrossRefADSGoogle Scholar
  15. 15.
    F. Marinozzi, M. Conti, U.M. Marconi, Phys. Rev. E 53, 5039 (1996)CrossRefADSGoogle Scholar
  16. 16.
    R. Guérin, J.M. Debierre, K. Kassner, Phys. Rev. E 71, 011603 (2005)CrossRefADSGoogle Scholar
  17. 17.
    S. Tokunaga, H. Sakaguchi, Phys. Rev. E 70, 011607 (2004)CrossRefADSGoogle Scholar
  18. 18.
    B. Echebarria, R. Folch, A. Karma, M. Plapp, Phys. Rev. E 70, 061604 (2004)CrossRefADSGoogle Scholar
  19. 19.
    Y.-T. Kim, N. Provatas, N. Goldenfeld, J. Dantzig, Phys. Rev. E 59, R2546 (1999)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institut Matériaux Microélectronique et Nanosciences de Provence, Aix-Marseille Université and CNRS, Faculté des Sciences et Techniques de Saint-JérômeMarseille Cedex 20France

Personalised recommendations