Advertisement

The European Physical Journal B

, Volume 70, Issue 3, pp 317–325 | Cite as

Spin density wave dislocation in chromium probed by coherent X-ray diffraction

  • V. L.R. JacquesEmail author
  • D. Le Bolloc’h
  • S. Ravy
  • C. Giles
  • F. Livet
  • S. B. Wilkins
Solid State and Materials

Abstract

We report on the study of a magnetic dislocation in pure chromium. Coherent X-ray diffraction profiles obtained on the incommensurate Spin Density Wave (SDW) reflection are consistent with the presence of a dislocation of the magnetic order, embedded at a few micrometers from the surface of the sample. Beyond the specific case of magnetic dislocations in chromium, this work may open up a new method for the study of magnetic defects embedded in the bulk.

PACS

42.25.Kb Coherence 61.72.Dd Experimental determination of defects by diffraction and scattering 75.30.Fv Spin-density waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Friedel, Dislocations (Pergamon Press, Oxford, 1964)zbMATHGoogle Scholar
  2. 2.
    P.A. Lee, T.M. Rice, Phys. Rev. B 19, 3970 (1979)CrossRefADSGoogle Scholar
  3. 3.
    L.P. Gor’kov, Pis’ma Zh. Eksp. Theor. Fiz. 38, 76 (1983) [JETP Lett. 38, 87 (1983)]Google Scholar
  4. 4.
    N.P. Ong, G. Verma, K. Maki, Phys. Rev. Lett. 52, 663 (1984)CrossRefADSGoogle Scholar
  5. 5.
    N.P. Ong, K. Maki, Phys. Rev. B 32, 6582 (1985)CrossRefADSGoogle Scholar
  6. 6.
    D. Feinberg, J. Friedel, in Low Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, edited by C. Schlenker (Klüwer Academic, Dordrecht, 1989)Google Scholar
  7. 7.
    C.H. Chen, J.M. Gibson, R.M. Fleming, Phys. Rev. Lett. 47, 723 (1981)CrossRefADSGoogle Scholar
  8. 8.
    C. Brun, Ph.D. thesis, University of Paris XI, 2007Google Scholar
  9. 9.
    D. Le Bolloc’h, S. Ravy, J. Dumas, J. Marcus, F. Livet, C. Detlefs, F. Yakhou, L. Paolasini, Phys. Rev. Lett. 95, 116401 (2005)CrossRefADSGoogle Scholar
  10. 10.
    P.J. Metaxas, J.P. Jamet, A. Mougin, M. Cormier, J. Ferré, V. Baltz, B. Rodmacq, B. Dieny, R.L. Stamps, Phys. Rev. Lett. 99, 217208 (2007)CrossRefADSGoogle Scholar
  11. 11.
    M. Kleiber, M. Bode, R. Ravlic, R. Wiesendanger, Phys. Rev. Lett. 85, 4606 (2000)CrossRefADSGoogle Scholar
  12. 12.
    K. Chesnel, M. Belakhovsky, G. van der Laan, F. Livet, A. Marty, G. Beutier, S.P. Collins, A. Haznar, Phys. Rev. B 70, 180402 (2004)CrossRefADSGoogle Scholar
  13. 13.
    G. Grüner, Charge Density Waves in Solids (North Holland, 1989)Google Scholar
  14. 14.
    J.P. Pouget, in Low Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, edited by C. Schlenker (Klüwer Academic, Dordrecht, 1989)Google Scholar
  15. 15.
    J.P. Pouget, S. Ravy, J. Phys. I (France) 6, 1501 (1996)CrossRefGoogle Scholar
  16. 16.
    J.L. Fry, N.E. Brener, D.G. Laurent, J. Callaway, J. Appl. Phys. 52, 2101 (1981)CrossRefADSGoogle Scholar
  17. 17.
    R.S. Fishman, S.H. Liu, Phys. Rev. B 47, 11870 (1993)CrossRefADSGoogle Scholar
  18. 18.
    R.S. Fishman, S.H. Liu, Phys. Rev. Lett. 76, 2398 (1996)CrossRefADSGoogle Scholar
  19. 19.
    Y. Tsunoda, M. Mori, N. Kunitomi, Y. Teraoka, J. Kanamori, Solid States Commun. 14, 287 (1974)CrossRefADSGoogle Scholar
  20. 20.
    D. Gibbs, K.M. Mohanty, J. Bohr, Phys. Rev. B 37, 562 (1988)CrossRefADSGoogle Scholar
  21. 21.
    R. Pynn, W. Press, S.M. Shapiro, Phys. Rev. B 13, 295 (1976)CrossRefADSGoogle Scholar
  22. 22.
    C.Y. Young, J.B. Sokoloff, J. Phys. F: Met. Phys. 4, 1304 (1974)CrossRefADSGoogle Scholar
  23. 23.
    W.B. Cowan, J. Phys. F: Met. Phys. 8, 423 (1978)CrossRefADSGoogle Scholar
  24. 24.
    E. Fawcett, Rev. Mod. Phys. 60, 209 (1988)CrossRefADSGoogle Scholar
  25. 25.
    A.W. Overhauser, Phys. Rev. 128, 1437 (1962)zbMATHCrossRefADSGoogle Scholar
  26. 26.
    A.G. Khachaturyan, Theory of structural transformations in solids (Wiley, New York 1983)Google Scholar
  27. 27.
    X.W. Jiang, R.S. Fishman, J. Phys.: Condens. Matter 9, 3417 (1997)CrossRefADSGoogle Scholar
  28. 28.
    P.C. de Camargo, I. Mazzaro, C. Giles, F. Yokaichiya, A.J.A. de Oliveira, H. Klein, J. Baruchel, J. Magn. Magn. Mat. 233, 65 (2001)CrossRefADSGoogle Scholar
  29. 29.
    J.P. Hill, G. Helgesen, D. Gibbs, Phys. Rev. B 51, 1033 (1995)ADSGoogle Scholar
  30. 30.
    D. Le Bolloc’h, F. Livet, F. Bley, T. Schulli, M. Veron, T.H. Metzger, J. Synchrotron Rad. 9, 258 (2002)CrossRefGoogle Scholar
  31. 31.
    M. Blume, D. Gibbs, Phys. Rev. B 37, 1779 (1988)CrossRefADSGoogle Scholar
  32. 32.
    D. Mannix, P.C. de Camargo, C. Giles, A.J.A. de Oliveira, F. Yokaichiya, C. Vettier, Eur. Phys. J. B 20, 19 (2001)CrossRefADSGoogle Scholar
  33. 33.
    L. Paolasini, C. Detlefs, C. Mazzoli, S. Wilkins, P.P. Deen, A. Bombardi, N. Kernavanois, F. de Bergevin, F. Yakhou, J.P. Valade, I. Breslavetz, A. Fondacaro, G. Pepellin, P. Bernard, J. Synchrotron Rad. 14, 301 (2007)CrossRefGoogle Scholar
  34. 34.
    The theoretical transition between the Fresnel and the Fraunhofer regime occurs at a distance d = L2, which gives 0.5 m with our experimental setup (pinhole size: L = 20 μm; λ = 2.1 Å). However in first approximation, the beam size. evolves as: \( \varsigma = \sqrt {L^2 + \left( {\frac{\lambda } {L}R} \right)^2 } , \) i.e. the beam size doubles at \( R = {{\sqrt 3 L^2 } \mathord{\left/ {\vphantom {{\sqrt 3 L^2 } \lambda }} \right. \kern-\nulldelimiterspace} \lambda } \) = 3.3 mGoogle Scholar
  35. 35.
    F. Livet, Acta Cryst. A 63, 87 (2007)CrossRefGoogle Scholar
  36. 36.
    F. Livet, F. Bley, M. Sutton, J. Mainville, E. Geissler, G. Dolino, R. Caudron, Nucl. Instrum. Methods Phys. Res. A 451, 596 (2000)CrossRefADSGoogle Scholar
  37. 37.
    I.K. Robinson, R. Pindak, R.M. Fleming, S.B. Dierker, K. Ploog, G. Grübel, D.L. Abernathy, J. Als-Nielsen, Phys. Rev. B 52, 9917 (1995)CrossRefADSGoogle Scholar
  38. 38.
    S. Ravy, D. Le Bolloc’h, R. Currat, A. Fluerasu, C. Mocuta, B. Dkhil, Phys. Rev. Lett. 98, 105501 (2007)CrossRefADSGoogle Scholar
  39. 39.
    D. Feinberg, J. Friedel, J. Phys. II (France) 49, 485 (1988)Google Scholar
  40. 40.
    S. Ravy, H. Requardt, D. Le Bolloc’h, P. Foury-Leylekian, J.P. Pouget, R. Currat, P. Monceau, M. Krisch, Phys. Rev. B 69, 115113 (2004)CrossRefADSGoogle Scholar
  41. 41.
    S.K. Burke, W.G. Stirling, K.R.A. Ziebeck, Phys. Rev. Lett. 51, 494 (1983)CrossRefADSGoogle Scholar
  42. 42.
    I.K. Robinson, Y. Da, T. Spila, J.E. Greene, J. Phys. D.: Appl. Phys. 38, A7 (2005)CrossRefADSGoogle Scholar
  43. 43.
    B. Hennion, J.P. Pouget, M. Sato, Phys. Rev. Lett. 68, 2374 (1992)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • V. L.R. Jacques
    • 1
    • 2
    Email author
  • D. Le Bolloc’h
    • 1
  • S. Ravy
    • 2
  • C. Giles
    • 3
  • F. Livet
    • 4
  • S. B. Wilkins
    • 5
  1. 1.Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS, UMR 8502Orsay CedexFrance
  2. 2.Synchrotron SOLEIL, L’Orme des merisiers, Saint-AubinGif-sur-Yvette CedexFrance
  3. 3.Instituto de Física “Gleb Wataghin”CampinasBrazil
  4. 4.LTPCM (CNRS-UMR 5614), ENSEEG-Domaine UniversitaireSaint Martin d’Hères CedexFrance
  5. 5.Brookhaven National LabUptonUSA

Personalised recommendations