The European Physical Journal B

, Volume 70, Issue 3, pp 335–342 | Cite as

Dynamics of the anisotropic two-dimensional XY model

  • L. S. LimaEmail author
  • A. S.T. Pires
Solid State and Materials


In this paper we study the dynamics of the two-dimensional XY model with single-ion anisotropy, and spin S = 1, in the large D phase, and low temperatures, using the bond operator formalism. The in-plane structure factor is a delta function. The out of plane shows a three peak structure, which merges in a single peak at the Brillouin zone boundary. We analyze also spin currents generated by a magnetic field gradient. The spin conductivity is calculated, at finite temperature, using the Kubo formula. The model shows unconventional ballistic spin transport at finite temperature. The computed spin conductivity exhibits a nonzero Drude weight at finite temperature. For ω< 2m, where m is the energy gap, the spin conductivity is described solely by the Drude weight. There is a regular contribution to the spin conductivity for ω> 2m, which persist in the zero temperature limit. The conductivity at the critical point, and for small frequencies, is (gμB)2/ħ times a universal scaling function of ħω/kB T.


75.40.Gb Dynamic properties 75.10.Jm Quantized spin models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.S.T. Pires, L.S. Lima, M.E. Gouvea, J. Phys.: Condens. Matter 20, 015208 (2008)CrossRefADSGoogle Scholar
  2. 2.
    J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)CrossRefADSGoogle Scholar
  3. 3.
    S.L. Menezes, A.S.T. Pires, M.E. Gouvêa, Phys. Rev. B 47, 12280 (1993); A.S.T. Pires, M.E. Gouvea, Phys. Rev. B 48, 12698 (1993)CrossRefADSGoogle Scholar
  4. 4.
    H.T. Wang, Y. Wang, Phys. Rev. B 71, 104429 (2005); H.T. Wang, J.L. Shen, Z.B. Su, Phys. Rev. B 56, 14435 (1997)CrossRefADSGoogle Scholar
  5. 5.
    S. Sachdev, e-print arXiv:cond-mat/0401041v1Google Scholar
  6. 6.
    E.B. Sonin, Preprint arXiv:0807.2524v1 (2008)Google Scholar
  7. 7.
    M. Sentef, M. Kollar, A.P. Kampf, Phys. Rev. B 75, 214403 (2007)CrossRefADSGoogle Scholar
  8. 8.
    K. Damle, S. Sachdev, Phys. Rev. B 56, 8714 (1997)CrossRefADSGoogle Scholar
  9. 9.
    F. Heidrich-Meisner, A. Honecker, W. Brenig, Preprint arXiv:0801.1268v1 (2008)Google Scholar
  10. 10.
    D.J. Scalapino, S.R. White, S. Zhang, Phys. Rev. B 47, 7995 (1993)CrossRefADSGoogle Scholar
  11. 11.
    F. Schütz, P. Kopietz, M. Kollar, Eur. Phys. J. B 41, 557 (2004)CrossRefADSGoogle Scholar
  12. 12.
    G.D. Mahan, Many Particle Physics (Plenun, New York, 1990)Google Scholar
  13. 13.
    A.L. Fetter, J.D. Walecka, QuantumTheory of Many-Particles Systems (McGraw-Hill, New York, 1971)Google Scholar
  14. 14.
    S. Sachdev, Quantum Phase Transitions (Cambridge, Cambridge University Press, Cambridge, 1999)Google Scholar
  15. 15.
    A. Auerbach, D.P. Arovas, Phys. Rev. Lett. 61, 617 (1998)CrossRefADSGoogle Scholar
  16. 16.
    A. Paduan-Filho, X. Gratens,Jr. N.F. Oliveira, Phys. Rev. B 69, R020405 (2004)CrossRefADSGoogle Scholar
  17. 17.
    F. Méier, D. Loss, Phys. Rev. Lett. 90, 167204 (2003)CrossRefADSGoogle Scholar
  18. 18.
    R.M. Konik, Phys. Rev. B 68, 104435 (2003)CrossRefADSGoogle Scholar
  19. 19.
    B. Trauzetel, P. Simon, D. Loss, Phys. Rev. Lett. 101, 017202 (2008)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations