The European Physical Journal B

, Volume 69, Issue 4, pp 465–471 | Cite as

Random field effects in field-driven quantum critical points

Solid State and Materials


We investigate the role of disorder for field-driven quantum phase transitions of metallic antiferromagnets. For systems with sufficiently low symmetry, the combination of a uniform external field and non-magnetic impurities leads effectively to a random magnetic field which strongly modifies the behavior close to the critical point. Using perturbative renormalization group, we investigate in which regime of the phase diagram the disorder affects critical properties. In heavy fermion systems where even weak disorder can lead to strong fluctuations of the local Kondo temperature, the random field effects are especially pronounced. We study possible manifestation of random field effects in experiments and discuss in this light neutron scattering results for the field driven quantum phase transition in CeCu5.8Au0.2.


71.10.-w Theories and models of many-electron systems 71.27.+a Strongly correlated electron systems; heavy fermions 75.10.-b General theory and models of magnetic ordering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Y. Imry, S.K. Ma, Phys. Rev. Lett. 35, 1399 (1975)Google Scholar
  2. T. Nattermann, in Spin Glasses and Random Fields, edited by A.P. Young (World Scientific, Singapure, 1997); T. Nattermann, J. Villain, Phase Transition 11, 5 (1988)Google Scholar
  3. A. Aharony, Y. Imry, S.K. Ma, Phys. Rev. Lett. 37, 1364 (1976)Google Scholar
  4. G. Grinstein, Phys. Rev. Lett. 37, 944 (1976)Google Scholar
  5. D.E. Feldman, Phys. Rev. Lett. 88, 177202 (2002)Google Scholar
  6. K.J. Wiese, P. Le Doussal, Markov Processes Rel. Fields 13, 777 (2007)Google Scholar
  7. G. Tarjus, M. Tissier, Phys. Rev. B 78, 024203 (2008); M. Tissier, G. Tarjus, Phys. Rev. B 78, 024204 (2008)Google Scholar
  8. A.A. Middleton, D. Fisher, Phys. Rev. B 65, 134411 (2002)Google Scholar
  9. T. Senthil, Phys. Rev. B 57, 8375 (1998)Google Scholar
  10. S. Fishman, A. Ahrony, J. Phys. C 12, 729 (1979)Google Scholar
  11. D.P. Belanger, Braz. J. Phys. 30, 682 (2000)Google Scholar
  12. F. Ye et al., Phys. Rev. Lett. 89, 157202 (2002)Google Scholar
  13. F. Ye et al., Phys. Rev. B 74, 144431 (2006)Google Scholar
  14. I. Fischer, A. Rosch, Phys. Rev. B 71, 184429 (2005)Google Scholar
  15. H. Von Löhneysen, A. Rosch, M. Vojta, P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007)Google Scholar
  16. H.V. Löhneysen, J. Phys. Condens. Matter 8, 9689 (1996)Google Scholar
  17. H.V. Löhneysen, C. Pfleiderer, T. Pietrus, O. Stockert, B. Will, Phys. Rev. B 63, 134411 (2001)Google Scholar
  18. O. Stockert, M. Enderle, H.V. Löhneysen, Phys. Rev. Lett. 99, 237203 (2007)Google Scholar
  19. A. Rosch, A. Schröder, O. Stockert, H.V. Löhneysen, Phys. Rev. Lett. 79, 159 (1997)Google Scholar
  20. A. Schröder, G. Aeppli, E. Bucher, R. Ramazashvili, P. Coleman, Nature (London) 407, 5623 (1998)Google Scholar
  21. R. Micnas, K.A. Chao, Phys. Rev. B 30, 6785 (1984)Google Scholar
  22. A.J. Millis, Phys. Rev. B 48, 7183 (1993)Google Scholar
  23. K. Binder, Z. Phys. B 50, 343 (1983)Google Scholar
  24. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge, 2000)Google Scholar
  25. More precisely, in an actual experiment, the energy resolution is finite and can in principle also pick up small contributions from slowly fluctuating domains very close to the transitionGoogle Scholar
  26. J. Villain, Phys. Rev. Lett. 52, 1543 (1984)Google Scholar
  27. J. Villain, J. Phys. France 46, 1843 (1985)Google Scholar
  28. T. Nattermann, Phys. Stat. Sol. B 129, 153 (1985); D. Fisher, Phys. Rev. Lett. 56, 416 (1986); T. Nattermann, Phys. Rev. Lett. 61, 223 (1988)Google Scholar
  29. W. Kleemann, Int. J. Mod. Phys. B 7, 2469 (1993)Google Scholar
  30. A.J. Millis, D.K. Morr, J. Schmalian, Phys. Rev. Lett. 87, 167202 (2001)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of CologneCologneGermany

Personalised recommendations